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Project objective and realized outcomes 

Curved multilayered dielectric structures with embedded metallic patterns (commonly 

referred to as metasurfaces) can act as electromagnetic devices that direct waves, manipulate 

the polarization of transmitted or reflected waves, or influence the spectrum properties of 

those waves. Recently, it was shown that these properties of metasurfaces can be successfully 

used for building various electromagnetic structures applied in different applications that vary 

from smart radomes for airplane or missile applications (in particular nose radomes) to 

subreflectors for multi-frequency antenna reflector systems. Till now most of the attention 

was focused on the development of planar metasurface structures, however, many demanding 

electromagnetic applications require the implementation of curved structures. Introduction of 

curvature significantly complicates the analysis and the design since the quasi-infinite 

periodicity used in planar structures is lost in this case (if the structure is curved in both 

principal directions). Furthermore, the considered structures are very large in terms of 

wavelength and they contain a lot of small metallic details within each of the metasurface 

layers (by definition, the unit cell of the metasurface pattern is much smaller than the 

wavelength). With all this in mind in order to successfully design curved metasurface 

structures one needs to develop a specialized efficient numerical analysis algorithms. The 

need for this specialized program lies in the fact that these large finite structures with 

numerous small cells cannot be efficiently designed using general electromagnetic solvers 

since the needed computer time for analyzing such complex structures would be very long 

(quite often more than several tens of hours or even days), memory requirements would be 

extremely large and the successful optimization would simply be too slow. 

The objective of the project is to develop a systematic approach and associated computer 

programs for designing curved multilayer structures containing metasurface layers. First part 

of the project was focused on the development of an efficient and accurate program for 

designing such structures, while second part was focused on the development of experimental 

prototypes that demonstrated the abilities of the developed analysis and design approach. 

The development of efficient and accurate programs was based on combining several 

approaches that show superior properties when designing electromagnetic structures 

containing metasurface layers:  

DISTRIBUTION A:  Distribution approved for public release



Analysis and Design of Curved Metasurface Structures  6 

(1) Modeling of a curved metasurface sheet

Metasurface structures are usually very complex and it is extremely time consuming to 

directly analyze them using general EM solver (note that it is practically impossible to use 

optimization procedure in such cases since one evaluation of the cost function takes typically 

numerous hours). Therefore, one needs good approximate models of metasurface sheets 

without going into details about their geometries. In the planar case the metasurface sheets 

were successfully analyzed using the surface sheet impedance approach. Therefore, as a first 

step we have developed a model of curved metasurface sheets using the modified surface 

impedance approach. In planar case the value of surface impedance tensor 𝑍̿ depends on 

frequency, polarization and angle of incidence. In conformal case we need to include principle 

radii of curvature and the EM wave variation along the metasurface of the impinging wave. 

Both of them play a crucial role in selecting types of elements for building curved 

metasurface sheets. Note that the local value of the surface impedance tensor 𝑍̿ can be 

determined using either the specialized software, approximate formulas, or the general 

electromagnetic software.  

(2) Analysis of canonical curved multilayer metasurface structures

The second step in developing general program for analyzing curved metasurface 

structures was the development of a program for analyzing canonical curved multilayer 

metasurface structures – cylindrical and spherical ones. There are two main reasons why we 

have chosen this intermediate step. The first reason is that the program for the analysis of 

canonical metasurface structures is extremely fast and thus the needed computer time for 

getting the parameters of the considered design is very short. Therefore, we have connected 

the developed analysis programs with a global optimization routine in order to obtain the 

initial design of the metasurface structure, which can serve as a starting point for making a 

design of the final general structure. Another reason for developing the program for analyzing 

canonical structures, perhaps even more important, is that such program makes it possible to 

investigate all the effects that are caused by the bending of metasurfaces. In other words, by 

analyzing canonical structures it is possible to understand what are the differences in the 

electromagnetic parameters of curved metasurfaces (compared to the planar structures) and to 

incorporate this knowledge into the process for designing general curved metasurface 

structures.  

The analysis of canonical multilayer metasurface structures is based on combining the 

surface impedance approach for modeling the curved metasurface sheet with the ABCD 

matrix approach for modeling cascaded metasurface structures. We have made the extension 

of ABCD matrix approach (originally derived for planar multilayer structures) to include the 

cylindrical and spherical geometries. The generalization is based on representing the curved 

dielectric layer as cylindrical or spherical transmission lines, and proper description of 

transmission line modes was used in the derivation of ABCD matrix parameters.  

The surface impedance tensor 𝑍̿ can be determined either by a rigorous EM solver, such as 

the Method of Moments (MoM), or by an approximate approach. The latter approach gives the 

value of tensor 𝑍̿ that does not change with the curvature of the structure and with the angular 

variation of the incidence field. This can lead to inaccuracies if  Z  changes rapidly as a 

function of the spectral variable (in other words, such approach gives a very poor 
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approximation of tensor 𝑍̿). Furthermore, it was demonstrated on several examples that the

knowledge of angular variation of tensor 𝑍̿ gives the information about which type of 

metasurface realization gives the best electromagnetic parameters (i.e. patches, crosses and 

Jerusalem crosses can give the same value of tensor 𝑍̿ in the planar case, but bending the 

metasurface sheet with such building elements gives quite different curvature effects). 

Therefore, accurate modeling of surface impedance tensor 𝑍̿ is extremely important in the 

design process. 

To conclude, the reported method for analysis of canonical curved multilayer metasurface 

structures represents a powerful starting point in the design of general curved metasurface 

structures. Furthermore, the proposed method aids in selecting the type of patterned sheet that 

is needed to obtain a desired angular variation of surface impedance tensor 𝑍̿.

(3) Analysis of curved metasurfaces with spatially-varying impedance distribution

Some devices like e.g. cylindrical or spherical cloaks would require homogeneous 

distribution of surface impedance. However, many devices would require spatially-varying 

impedance distribution in order to modulate amplitude and phase of incoming wave. 

Furthermore, quite often the considered metasurface is occupying only a part of canonical 

surface (such as a cylinder or a sphere). One example is a dome antenna with a purpose to 

either flatten the gain dependency or to enhance the gain of the antenna array inside the dome. 

Consequently, the analysis approach for canonical curved structures was generalized in order 

to include a class of metasurface structures with spatially-varying impedance distribution. 

There are several ways how to make this generalization. As demonstrated in the report, the 

most suitable selection depends on the domain in which we would like to calculate the 

metasurface sheet impedance distribution (i.e. spatial or spectral domain)  and on the way how 

we would like to calculate the needed Green’s functions. Fortunately, all the possibilities lead 

to a solution of the same complexity and accuracy. 

(4) Analysis of general curved multilayer metasurface structures with Body-of-

Revolution (BoR) type of symmetry

Most curved metasurface structures of interest (smart radomes, nose radomes, reflectors 

and subreflectors, etc.) contain Body-of-Revolution (BoR) symmetry. Therefore, in order to 

develop a fast and accurate program for design purposes, we have decided to develop a 

computer program for curved metasurfaces structures with BoR type of symmetry. By this a 

general three-dimensional electromagnetic problem is transformed into a spectrum of two-

dimensional problems which are much easier and faster to solve. The developed program is 

very general, it is based on the Moment Method with sub-domain basis and test functions 

(used to solve two-dimensional problems), the analyzed structure can be multilayer and can 

contain arbitrary number of metasurface layers, the value of the surface impedance tensor can 

vary spatially and can have different values for different angular variation of the incident 

wave, etc. The developed program is written in a form of an algorithm. We named the 

algorithm the G2DMULT-BoR algorithm, i.e. the algorithm that calculates the Green’s 

functions of two-dimensional (2D) multilayer structures with body-of-revolution type of 

symmetry.   
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(5) Experimental verification of the developed analysis and design method 
 

Second part of the project was focused on the realization of practical curved metasurface 

prototypes needed to answer two questions – is it possible to successfully use the developed 

computer programs for designing realistic electromagnetic devices, and which technology can 

be used for making such structures. The planar metasurface structures can be easily built 

using the printed circuit board (PCB) technology. The same technology can be used for 

singly-curved structures. One need to consider the flexural modulus of selected substrate, i.e. 

one has to select a substrate that is suitable for bending (luckily, the substrate producers offer 

such products). However, double-curved structures cannot be built in such a way and some 

alternative technology should be implemented. In recent years, there is an expansion of 3D 

printing methods and we propose to test if such technology can be used for building double-

curved metasurface structures. The main problem in this realization will be to obtain accurate 

metallization of the desired pattern, and as a part of the project we have investigated several 

metallization approaches. The easiest approach is to use a spray with conductive (most often 

silver-based) paint. However, such method is not suitable for obtaining metasurfaces with 

geometrically small details. Furthermore, the ohmic lossess are larger comparing with the 

structures produced using printed circuit technology. Much better properties can be obtained 

with sputtering process (however, one needs to have access to such production technology). 

The last considered option is metallization of 3D printed structures using electroless copper 

plating process. It is important to note that in all considered methods one first needs to 

manufacture or print an appropriate mold pattern or template to apply the metallization on the 

dielectric sample.  
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Introduction 
 

 

 

 

 

New electromagnetic devices that contain metamaterial structures have attracted strong 

interest over the past several years. Metamaterials are usually engineered by arranging small 

volume scatterers in a periodic grid with periodicity much smaller than the wavelength. The 

complex manufacturing of these volume scatterers is often one of the practical limitations 

(together with small bandwidth and ohmic loss issues) and it is why metamaterial structures 

are nowadays implemented in only few commercial devices.  

Recently, a simplified two-dimensional version of metamaterial structures was proposed. 

Here the metamaterial structure is realized by printing metallic patterns on dielectric 

supporting layer. By this a so-called metasurface structure is realized that can be easily 

produced using printed circuit board technology. In general, metasurfaces have advantage of 

taking up less physical space than full three-dimensional metamaterial structures 

(consequently, metasurfaces are structures with smaller ohmic losses). While this interest has 

resulted in very interesting designs (for example, electromagnetic cloaks and superlenses), it 

has also initiated research in other directions. In particular, new possibilities for manipulating 

the direction and polarization properties of transmitted electromagnetic waves have been 

explored. Traditionally, resonant elements were used in the design of periodic frequency 

selective surfaces (FSS) [1]. The more recent use of sub-wavelength elements as building 

blocks for metasurfaces has enabled a wider range of functionality such as focusing, beam 

tilting, polarization manipulation, and increased bandwidth and angular performance. (see e.g. 

[2] -[8]). 

In modern communication and radar applications there is often the requirement for curved 

structures which are “smart” in electromagnetic sense.  For example, nose radomes on 

airplanes and missiles are often used to house airborne scanning radar antennas. The presence 

of these radomes, strongly affects the antenna pattern and causes main beam offset, gain 

decrease and side-lobe level variation. These are only some of the effects that must accurately 

be predicted in order to maintain system performances at the desired level. That can be only 

done if the whole structure is analyzed with accurate software. The size of the structure (in 

terms of the wavelength) and the ratio between the structure details and the structure size 

represent considerable practical limitations if general electromagnetic software is used, in 

particular if the same software is used for optimization purposes [9]. These arguments foster 

development of a specialized software for the class of electromagnetic problems of interest. 

Studies to date have predominantly considered planar surfaces that can be realized using 

conventional planar fabrication techniques. For such surfaces, efficient design approaches 

based on surface impedance boundary conditions (both penetrable [3] – [6], [10] – [14] and 

opaque surface impedance formulations [7], [15], [16]) have been developed. However, either 
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for mechanical/aerodynamic, or electromagnetic reasons, some metasurface designs require 

curvature. In general, introducing curvature to metasurface design is a challenging task, since 

one needs to deal with finite dimensions and a more complex periodicity. Several other 

difficulties arise when translating analysis and design approaches from planar to curved 

structures. For example, the projection of a periodic grid onto curved surfaces becomes an 

issue, and incident plane waves are scattered as a spectrum of reflected waves, as opposed to a 

single plane wave in the planar case. Cylindrical metasurfaces, fabricated from flexible 

printed circuit boards, have been considered in the past as attractive class of curved 

metasurface structures. They were used for reshaping radiation patterns [17], [18], mantle 

cloak realizations [19], [20], the reduction of antenna blockage [21], and scattering 

manipulation and camouflage [22].  

  

2.1 Formulation of general metasurface electromagnetic problem 

 

Ideally, a wave-shaping metasurface can be considered as a thin, planar or curved 

electromagnetic structure that transforms an arbitrary impinging field distribution into the 

desired scattered wave. An analytical approach to define the needed properties of the 

considered metasurface that has been recently proposed is based on implementation of the 

surface equivalence principle [5], [6]. In order to create the desired field distribution in 

different regions of space (see Fig. 2.1), the additional electric and magnetic currents must be 

enforced over the interface in order to satisfy the electromagnetic boundary conditions. In 

other words, we need to somehow obtain electric and magnetic currents that have the role of 

equivalent currents in the equivalence theorem:  

 

   2 1 2 1
ˆ ˆ,eq eqn n      J H H M E E   (2.1) 

where eq
J  and eq

M  are the required distribution of surface electric and magnetic currents.  

 

 
Fig. 2.1. Metasurfaces inspired with equivalence principle. 

 

One way to achieve the needed current distribution is incorporate carefully excited electric 

and magnetic dipole antennas over the virtual boundary, which is usually not easy to obtain in 

practice. Other approach is based on inducing polarization currents on suitably designed 

admittance surfaces.  In this case, the electric and magnetic polarizability can be tailored to 
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satisfy the condition (2.1), i.e. to obtain the desired field distribution. The needed Huygens 

electric surface impedance EZ  and magnetic surface admittance HY is related to the average 

tangential fields along the interface [5]: 
 

   2 1
ˆ ˆ ˆ ˆE eq E

avn n Z n Z n           
   

E J H H     (2.2) 

   2 1
ˆ ˆ ˆ ˆH eq H

avn n Y n Y n            
   

H M E E    (2.3) 

Here the notation av means the average of two tangential field components along the different 

sides of the interface. Note that the necessity of a magnetic response on the surface is 

connected with a request for symmetry breaking. A combined magnetic and electric response 

can result in breaking the radiation symmetry of the surface that enables the desired wave 

control without unwanted back-reflection [23]. 

At microwaves, an immediate candidate to realize an electromagnetically polarizable 

surface is to employ loaded wires and loop antennas or metallic patterns, designed to follow 

the desired effective sheet impedances, at least at closely spaced discrete points on the 

surface. Magnetic effects, however, are usually not compatible with simplicity of production 

using standard printed circuit-board technology. Furthermore, inducing this magnetic 

response in conjunction with the electric properties of a thin surface is one of the main 

challenges in applying the Huygens metasurfaces in the optical frequency range.   

Recently, it has been demonstrated that an arbitrary wavefront and polarization distribution 

of a transmitting metasurface can be achieved with cascaded metasurfaces (containing three 

or four metasutface layers) with electric response only. The same approach can be applied to 

opaque metasurfaces designed to reflect the waves with desired wavefront [24]. Theoretical 

background is given in [4] where it has been shown that one can realize an arbitrary (passive 

and reciprocal) bianisotropic metasurface by cascading anisotropic sheets with electric 

responses only. 

The electromagnetic problem containing metasurfaces (described with eq. (2.2)) can be 

solved using the Mode Matching (MM) or the Method of Moments (MoM) approach. The 

MM approach is suitable for canonical problems where the considered metasurface is of 

canonical shape (e-g- planar, cylindrical or spherical). Then one can represent the EM fields 

in terms of the eigenmodes of that type of geometry. The eigenmode expansion itself is 

obtained by performing the suitable form of two-dimensional (2D) Fourier transformation – in 

cylindrical case the suitable 2D transformation is combination of Fourier series in -direction 

and Fourier transformation in axial direction. The solution is obtained by matching the 

boundary condition (2.2) by each eigenmode separately (if the metasurface is homogeneous 

with no sheet impedance variation; the non-homogeneous metasutfaces of canonical shape 

can also be analyzed with the same approach). The details of the MM approach will be given 

is chapters 3 and 4. 

In the Moment Method (MoM) approach one needs to determine the variation of surface 

currents defined with eqs. (2.2) and (2.3). The first step in implementing the solution 

procedure is to define the integral equation. If the metasurface has the electric response only, 

i.e. if the unknown is the surface electric current distribution, then for the transmitting 

metasurfaces the integral equation to be numerically solved is [25]: 
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ˆ ˆ ˆ ˆ( ) ( ) ( | ') ( ') ' ( | ') ( ') '

ˆ ˆ( ) ( ( ))

inc EJ eq EM eq

av

S S

E eq

av

n n n G dS n G dS

n n Z

        

   

 E r E r r r J r r r M r

E r J r

(2.4) 

 

Here G  denotes the suitable (i.e. problem dependent) dyadic Green’s function. For 

homogeneous space the Green’s functions in compact notation are: 
 

 

2

' '
( | ')

4

jkR
EJ e

G j k I
k R




  
  

 
r r     (2.5) 

( | ')
4

jkR
MJ e

G I
R

 
  

 
r r       (2.6) 

 

Here R denotes the distance between the source and observation points ' .R  r r  If the 

metasurface structure has no magnetic response, i.e. if  
2 1 0, E E  i.e. under the assumption 

that the metallic pattern synthesizing the considered metasurface is thin and thus the 

tangential electrical field is continuous across the metasurface interface, then there is no part 

with magnetic currents. 

If we would like to consider an opaque metasurface that only reflects the EM waves, then 

we can apply the equation (2.4) with taking into account that 
1 1 0: E H  

 

2

2

ˆ ˆ ˆ ˆ( ) ( ) ( | ') ( ') ' ( | ') ( ') '

ˆ ˆ( ) ( ( ))

inc EJ eq EM eq

S S

E eq

n n n G dS n G dS

n n Z

        

   

 E r E r r r J r r r M r

E r J r

   

(2.7) 
 

In this case it is not possible to neglect the term containing the equivalent magnetic currents. 
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Modeling cascaded curved metasurfaces with 

homogeneous surface impedance 
 

 

  

3.1 Introduction 

 

The focus of this chapter is to introduce analysis approach applicable to canonical curved 

metasurfaces with uniform sheet impedance distribution; a detailed formulation is presented 

for cylindrical and spherical cascaded metasurfaces. The proposed analysis combines the 

concept of sheet impedances in the spectral domain with ABCD transmission matrix 

formulation to allow the analysis of multilayer structures. In other words, the ABCD matrix 

formulation for the analysis of cascaded circuit networks as well as planar, stratified 

electromagnetic structures is extended to cylindrical and spherical geometries, which 

represent the basis for developing a general code for analyzing multilayer multi-metasurface 

structures.  

The influence of the higher order azimuthal modes is discussed in detail in this chapter. To 

date, only the dominant zero-order cylindrical mode was considered to obtain a required 

metasurface reactance (see e.g. [19]-[22]). It will be shown that a metasurface’s response to 

higher order modes (its response to the waves with azimuthal propagation constants different 

from zero) helps in selecting optimal metasurface elements/textures for a given application. 

Furthermore, the analytical formulas for the sheet impedance of commonly used planar, 

metallic patterns are modified to account for curvature.  

The first part of the chapter describes both the analysis of single-layer, cylindrical 

metasurfaces and an ABCD transmission matrix approach for cascaded, concentric structures. 

The proposed approach is applied to cylindrical structures with various different layers 

(metallic or dielectric). This is exploited in the Results section by first studying the accuracy 

of different methods for determining sheet impedances, followed by the investigation of 

situations where the dependence of sheet impedances on azimuthal modes must be taken into 

account. Next, two-sheet metasurface example is used to evaluate the number of cylindrical 

modes needed accurately model the cascaded structures. Finally, the formulation is also 

applied to spherical metasurface structures. 
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Fig. 3.1. Geometry of curved metasurface structure. 

 

 

3.2 Analysis of single-layer cylindrical metasurface  
 

Analysis will be performed in the spectral domain. That is, the electromagnetic fields are 

Fourier transformed along the two dimensions in which the structure is invariant. In the 

considered cylindrical case, we decompose the EM field into cylindrical waves (e.g. 

representation of the E-field): 

z

zjkjm

z
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


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),,( EE          (3.1) 

For the considered cylindrical structure of circular cross-section, one can represent the field 

distribution in the nth layer in the following way 
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Here 
)1(

mH and 
)2(

mH are the Hankel functions of the first and second kind (they represent 

inward and outward travelling cylindrical waves), and Cm are the wave amplitudes that need 

to be determined. The other field components are determined using the following expressions: 
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The radial component of the propagation constant is defined as ,222

znn kkk   and kn and ηn 

are wave number and wave impedance of the considered layer. 

 For each spectral component, the metasurface layer is modeled using a penetrable sheet 

impedance boundary condition (an example of geometry is shown in Fig. 3.1): 
 

            HHJE
~~

ˆˆ
~

ˆ
~

ˆ nZnZnn av         (3.4) 

 

Here,  denotes one spectral component of the averaged electric field at a metasurface layer, 

and
 

are the spectral components of the magnetic field at the outer and inner 

metasurface boundaries, )
~~

(ˆ
~   HHJ nav  represents the averaged surface current in the 

spectral-domain, Z  is the sheet impedance tensor, and  is the outward pointing unit vector, 

normal to the metasurface layer  ̂ˆ n . Note that the metasurfaces (see Fig. 3.1) introduce a 

discontinuity in the tangential magnetic field only. In other words, the metasurface only has 

an electric response, and can be modeled with induced surface electric currents. The 

generalization to magnetic surface currents (loop or slotted metasurface elements) is 

straightforward. 

The surface impedance tensor Z  is not a constant tensor but rather depends on the 

properties of the impinging electromagnetic wave. That is, the nonlocal (spatially dispersive) 

properties of the metasurface are taken into account. For instance, in the planar case, the 

nonlocal properties can be characterized by varying the incidence angle of incoming plane 

wave. Therefore, for each spectral field component, we define the impedance tensor 

 that can be expressed as 
 

.
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z kmZkmZ
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Here, the subscripts denote the corresponding components of the electric field and surface 

current, respectively. Note that the spectral variable m corresponds to the transverse 

component of the wave number, nt mk / where ρn is the radius of the considered 

metasurface layer. Given that azimuthal modes with 
nkm  are propagating, they need to be 

taken into account when calculating the scattered field. Since the sheet impedance depends on 

the azimuthal wave number, this dependency should also be taken into account in the 

calculation, as will be shown in the next section. 

As (3.4) indicates, sheet impedances can be calculated from the calculated transverse 

components of the electromagnetic field on either side of the sheet. This can be done using a 

solver based on the Moment Method (MoM) [26] or other numerical methods. Often the 

cylindrical sheet impedance is approximated with the sheet impedance of an equivalent planar 

sheet. Alternatively, analytical sheet impedance formulas, available for commonly used planar 

patterns, can be used [27], [28]. In general, these two approximate approaches (note that both 

are planar approximations) do not account for the sheet impedance’s dependence on the 

spectral variable m. However, the analytical sheet impedance formulas depend on the angle of 

incidence θ through the spectral variable cos0kkz  . Therefore, the azimuthal dependence 

of the sheet impedance can also be included by defining a tangential wavenumber that is 

E
~


H
~ 

H
~

n̂

),( zkmZZ 
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azimuthal . The accuracy of these two simplified methods for determining Z  will 

be discussed in the next section.   
 

 

3.3 Analysis of cascaded cylindrical metasurface structures  
 

In order to calculate the response of the cylindrical metasurface, consisting of a cascade of 

multiple layers, we will use a cylindrical ABCD transmission matrix approach [29]. This 

approach is a simple, yet powerful tool that allows the analysis of multilayer periodic 

canonical metasurfaces. One simply needs to analyze each layer separately (find the 

impedance tensor Z  of each cylindrical sheet and dielectric layer), and then multiply the 

ABCD matrices of the individual layers to obtain the overall ABCD matrix of the cascaded 

layers (the metasurface). This approach can also simplify the design/optimization of these 

cascaded metasurfaces, since it becomes possible to separate the original complex problem 

into several simpler sub-problems.  

Let us consider the case where one wants to calculate the field scattered from an N-layer 

cylindrical metasurface. The spectral-domain ABCD matrix of a constitutive sheet of the 

metasurface is given by the following expression: 
 

    (3.6) 

 

where . Both transverse electric (TEz) and transverse magnetic (TMz) waves 

according the z-axis are considered which leads to a 4×4 ABCD matrix [4]. It should be noted 

that all entries of the ABCD matrix are dependent on both azimuthal mode number m and 

wavenumber zk .  

The total fields in each dielectric layer can be written in terms of outward and inward 

travelling cylindrical waves (Hankel functions of the first and second kind, see eqs. (3.2) and 

(3.3)) as follows, 
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Here, α and β are the amplitudes of the propagating, cylindrical TM and TE waves in the 

considered dielectric layer (i.e. the Ez and Hz components without the radial dependence), 

respectively. The superscripts + and – denote outward and inward cylindrical waves. The 

ABCD matrix can be solved for by relating the field expressions at the two boundaries (inner 

with coordinate ρn-1 and outer with coordinate ρn) of the cylindrical transmission line: 
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It should be noted that the resulting ABCD matrix is block-diagonal for kz = 0 or for m= 0. In 

other words, under normal incidence and for the fundamental -invariant mode, the TEz and 

TMz waves are uncoupled. 

The ABCD matrix of the multilayer cylindrical metasurface structure is obtained by simply 

multiplying the ABCD matrices of the cascaded cylindrical transmission lines (dielectric 

layers) and the sheets. From it, the scattered field can be easily determined. One simply needs 

to solve the following matrix equation:  
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          (3.9) 

 

Here, the ABCD matrices of the metasurface layers and the cylindrical transmission lines are 

symbolically written; ρ1 and ρN are the inner and outer boundaries of the entire structure. 

Matrix equation (3.9) represents a system of 4 equations with 4 unknowns, where the 

unknowns are the amplitudes of  and z zE H  components at the inner and outer boundaries of 

the structure. The amplitudes of the -components are calculated using (3.3). From these EM 

field quantities, the scattered field can be found. For the EM field in the innermost layer the 

standing wave representation (i.e. the Bessel function representation) is applied in the eq. 

(3.2), thus we have only two unknown coefficients related to that layer. Therefore, the four 

unknowns in the linear system (3.9) are the amplitudes of the z-components of the scattered 

field and of the EM field in the innermost region. 

In all the considered examples, the metasurface structures were excited with an incident 

plane wave: 
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For α
inc

 = 0° the excitation is a TMz plane wave and for α
inc

 = 90° it is a TEz plane wave. 

Other types of excitations, like a line source, can be implemented in a straightforward manner 

(see e.g. [20]). 
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Note that the ABCD matrix approach can also be applied to cylindrical structures with only 

one metasurface layer, and the first set of results will consider such structures.  
 

 

3.4 Algorithm for calculating Green’s functions of cascaded metasurface structures  
 

The described approach for modeling cascaded curved metasurfaces can be implemented 

into the algorithms for calculating Green’s functions of multilayer structures. Previously we 

have developed a numerical algorithm for calculating the Green's function of multilayer 

structures of planar, circular-cylindrical and spherical type (so-called one-dimensional (1D) 

structures; the considered structures are homogeneous in two dimensions and they vary in one 

dimension only) [30], [31]. The algorithm starts with a 3D problem including some excitation 

currents (e.g. a chosen current distribution on a conformal microstrip patch element) and a 

multilayer structure (one of the three mentioned types). Then we transform the currents in the 

two dimensions (using suitable variation of the two-dimensional Fourier transformation) 

where the structure is invariant. Doing this, the current excitation can be interpreted in space 

as a current sheet, tube or shell around the multilayer structure. Then, the G1DMULT 

algorithm can be used to calculate the field solution of the multilayer structure in the spectral 

domain. The 3D field solution is obtained by a 2D inverse Fourier transform of the spectral 

solutions. The multilayer solution process is the same for all three geometries, i.e. the 

G1DMULT is very general. It can handle any number of layers of materials with complex 

permittivity and permeability. It calculates the field at several user specified observation 

points, due to several independent user-specified current sources at different locations. 

The theoretical background of the G1DMULT algorithm is the Huygens's principle or, 

more precisely, the Love's equivalence theorem. The spatial harmonic problem is subdivided 

into one equivalent problem per layer where the field in each region is formulated as the field 

radiated by equivalent currents at the layer boundaries. For example, the E-field in the layer j 

is expressed as 
 

hom hom hom hom hom hom

1 1

eq eq eq eq exci exci

j EJ j EJ j EM j EM j EJ j EM j      E G J G J G M G M G J G M          (3.11) 

  

where 
eq

jJ
~

 and 
eq

jM
~

 are equivalent electric and magnetic current sheets at boundary j, 
exci

jJ
~

 

and 
exci

jM
~

are excitation electric and magnetic currents in layer j (if any), and 
hom

~

EJG  and  
hom

~

EMG  

are the Green's functions of the homogeneous structure. By using the equivalence principle 

the equation (3.11) can be expressed in terms of the unknown tangential EM field components 

at the boundary j between layers j and j+1 and known excitation currents. The boundary 

conditions that the tangential E- and H- fields are continuous at the layer boundaries give 4 

linear equations per boundary. The tangential E- and H-fields are evaluated by solving the 

system of 
boundary4 N  equations with 

boundary4 N  unknowns, where 
boundaryN  is the number of 

boundaries present in the multilayer structure. After they have been determined, the total E- 

and H-fields at any desired location can be found by using the equivalent principle. 

The metasurface layers can also be included into the G1DMULT algorithm. In other 

words, the modified G1DMULT algorithm calculates the EM field distribution inside and 

outside multilayer structure that contains metasurface sheets. The boundary containing the 

metasurface sheet is treated as a boundary at which the equivalent currents are discontinuous. 

The boundary condition given by: 
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,        ˆ ˆ ˆ( ( )n n Z n        
 

E H H                   (3.12) 

 

which is transformed into the boundary condition for the equivalent currents in the spectral 

domain: 
 

  ( )eq eq eq

j j jZ  
    
 

M J J                                     (3.13) 

 

Note that the metasurface layer requires definition of two boundaries (with zero distance 

between them) at which the equivalent magnetic current is continuous and the equivalent 

electric current is discontinuous according the eq. (3.13). In the same way the discontinuity of 

the electric field (loop or slotted metasurface elements) is considered. 

The opaque (reflective) metasurface can be treated as non-penetrable boundary with 

impedance boundary condition: 
 

 ˆ ˆ ˆn n Z n      
 

E H      (3.14) 

 

or, by using equivalent currents, the opaque impedance boundary condition is equal 
 

 ˆeq eqn Z   M J      (3.15) 

According the impedance boundary condition the system of equations inside the G1DMULT 

algorithm is modified as shown in Figure 3.2. By this, for each spectral component only two 

unknowns (related to the two surface components of the equivalent magnetic current) are 

associated with the impedance boundary; the contribution of other two unknowns (two 

surface components of the equivalent electric current) are taken into account using eq. (3.15).   

 

 

Fig 3.2. Modification of the system of equations inside the G1DMULT algorithm for EM 

problems containing an opaque metasurface. 
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3.5 Exact surface impedance vs. approximations 
 

The first set of results compares how different ways of calculating metasurface reactance 

affect the overall results. We start with case 1 where we calculated the field scattered by a 

dielectric cylinder covered with vertical strips under TMz incidence, as shown in Fig. 3.3. In 

this case, the metasurface acts as an inductive reactance. 

 

 

Fig. 3.3. Dielectric cylinder with periodic vertical PEC strips. 

 

The dielectric cylinder considered is made of Teflon with   εr = 2.1, tan δ = 0.00015, and 

has a radius ρ =12.7 mm. The strip width is W = 3 mm and the period of the strips is P  = 

9.97 mm (0.33 λ0 at 10 GHz). The incident wave is TMz polarized with incident angle θ = 60°. 

In the past, such cylinders were manufactured and their scattering properties measured at 

Chalmers University of Technology [26].  

First, we tested the proposed analysis method for the case where the sheet impedance 

tensor Z  was calculated using a moment method code for cylindrical periodic structures [20]. 

As shown in Fig. 3.4 there is excellent agreement between the calculated results obtained 

using the proposed method and the exact MoM code for cylindrical structures. There is also 

good agreement with the measurements of the experimental prototype, even with 

itsfabrication tolerances.  

Further, it is valuable to compare how different approximations for the sheet impedance 

tensor affect the results obtained using the proposed analysis approach. Two separate 

approximations were considered, and compared to the results obtained for the sheet 

impedance tensor calculated using the cylindrical MoM code. First, a MoM code for planar 

(flat) periodic structures was used to extract the impedance tensor at θ = 60° incidence. Next, 

the following approximate expression for planar strips [27] was used for a TMz incident wave: 
 













































2

2

00 1
2

csclog
2

)(
eff

z
z

approx

zz
k

k

P

W
P

k
jkZ










         (3.16.a) 

DISTRIBUTION A:  Distribution approved for public release



Analysis and Design of Curved Metamaterial Structures   21 

1

2

2

0

0 1
2

csclog
)1(

)(































































eff

z

r

z

approx

k

k

P

W

kP
jkZ










            (3.16.b) 

 

where effk  is equal 2)1(2

0

2  reff kk  . Note that the angle of incidence of the plane wave 

determines the spectral variable .cos0 kkz    

 

 

Fig. 3.4. Total scattering width of a dielectric cylinder loaded with periodic axial strips. 

 

Fig. 3.5.a shows that the approximations cause a frequency shift in the calculated scattering 

results. This frequency shift occurs because the rigorously obtained impedance tensor depends 

on the azimuthal mode. In contrast, the two approximations estimate the admittance tensor to 

be constant with respect to mode order m. This can be seen from the calculated surface 

reactances given in Fig. 3.5.b. at 12 GHz.  

The situation is quite different for circumferential strips (Fig. 3.6.). The periodicity of the 

strips is Pz = 8 mm (0.27 λ0 at 10 GHz), and all other parameters are kept the same as in the 

previous example. The incident wave was TEz polarized with incident angle θ = 60°. Since we 

are considering the surface impedance in the spectral domain, we can modify the approximate 

planar surface impedance formulas (3.16) to include the propagation constant in the -

direction : mk    
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Note that the approximate formulas only have a dependence on the phase variation along the 

strips. Therefore, there is no dependency on incident angle θ in eqs. (3.17). 
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(a) 

 

(b) 

Fig. 3.5. Comparison of calculated total scattering width of a dielectric cylinder loaded with 

periodic axial strips. The metasurface impedance is calculated in three different ways; (a) 

calculated total scattering width, (b) dependency of surface reactance Zzz  on angular mode at 

12 GHz. 
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Fig. 3.6. Dielectric cylinder with periodic circumferential PEC strips. 

In this case, the surface impedance varies significantly with angular mode number (see 

Fig. 3.7.b). Therefore, it is not possible to accurately approximate the surface impedance with 

the value obtained from the equivalent planar case. However, the approximate expressions 

(3.17.a) and (3.17.b) closely predict the azimuthal variation of surface impedance. 

Consequently, there is close agreement between the results in which the impedance tensor is 

determined using a cylindrical MoM code, the approximate expressions (3.17) in which the 

azimuthal variation is taken into account, and measurements (see Fig. 3.7.a). One could also 

include the azimuthal propagation constant into the analysis of the equivalent planar structure. 

However, the equivalent incident angle will be different for each frequency and spectral 

variable m (i.e. the equivalent incident angle is equal to  ))((arcsin 0km strips ), so it would 

be extremely time consuming to calculate the surface impedance using commercial EM 

solvers in this way. 

 

(a) 

 

(b) 

Fig. 3.7. Comparison of calculated total scattering width of a dielectric cylinder loaded with 

periodic circumferential strips. The metasutrface impedance is calculated in three different 
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ways; (a) calculated total scattering width, (b) dependency of surface reactance Z  on 

angular mode at 12 GHz. 

 

3.6 Selection of optimal elements for cylindrical metasurfaces 
 

To further verify the proposed method and indicate how different realizations of the 

metasurface effect the results we will consider the mantle cloak example discussed in [19] and 

[20]. The structure considered is a PEC cylinder of radius 10 mm, with a dielectric shell of 

outer radius 10.5 mm and permittivity εr = 20 shown in Fig. 3.8. The operating frequency is 3 

GHz, therefore the radius of the PEC cylinder is 0.1λ0. The first step in designing a mantle 

cloak is to estimate the needed metasurface impedance. Initially we assume that it has a 

constant value, i.e. that it does not change for different -modes. By performing a parametric 

sweep over sheet impedances and calculating the minimum total scattering width, it was 

determined that the optimal value for the metasurface reactance is -12.23 Ω. This is consistent 

with the results presented in [19]. We considered two realizations of the capacitive 

metascreen. The first realization consists of square metallic patches shown in Fig. 3.8 (side 

width of W = 10.6 mm, and gap between the patches of P – W = 0.39 mm). The second 

realization consists of Jerusalem crosses (Fig.3.8) with side dimension WJ = 9.382 mm, line 

width tJ = 0.625 mm, T-section width TJ= 3.127 mm, and a gap between the crosses of PJ – 

WJ = 1.61 mm. In both cases, there are 6 elements along the -direction, i.e. period is 0.37 λ0 

at the central frequency. The values of surface impedance tensor are calculated using a MoM 

code for cylindrical periodic structures [26]. It should be noted that the dimensions of both 

structures were determined by finding those that resulted in minimum total scattering width at 

3 GHz. 

 

 

Fig. 3.8. Mantle cloak realization on a PEC cylinder with dielectric shell. Cloak is a 

metasurface based on square PEC patches or PEC patches in the shape of Jerusalem crosses. 
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We have compared in Figure 3.9 the total scattering width and the bandwidth properties of 

the cylindrical object with the two considered metasurface realizations. The incidence wave is 

a TMz polarized normally incident plane wave (i.e. 0cos0  kkz ). Fig. 3.9. also shows 

the result for a mantle cloak with constant metasurface reactance equal to -12.23 Ω, and the 

total scattering width of a PEC cylinder of radius 10.0 mm (i.e. of the hidden object) in order 

to establish the bandwidth of the considered cloaks. It can be seen that the patch metasurface 

is superior since it provides higher scattering reduction and larger bandwidth of operation. In 

addition, the patch metasurface outperforms the metasurface cloak with a constant sheet 

reactance. In order to explain why the patch metasurface is superior in comparison with the 

other structures, we have plotted the variation of the surface reactance with mode order m for 

all three considered cases. From Figure 3.10, it is evident that all three cases have 

approximately the same reactance for the m=0 mode (mode with no -variation). However, 

the surface impedance of the Jerusalem crosses and patches differs for the higher-order m 

modes. Specifically, the magnitude of the reactance is larger for patches than for Jerusalem 

crosses with increasing m. In order to appreciate the importance of tailoring the mode order 

variation of the surface reactance, we have calculated an optimum -variation for the surface 

reactance: the reactance that gives zero total scattering width for each  mode. This optimal 

impedance 
opt

zzZ  can be found by setting each spectral-domain component of the scattered 

field in eq. (3.9) equal to zero, which results in a characteristic equation for each spectral 

component of the surface impedance:  
 

1
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  
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 (3.18) 

 

The optimum profile is also plotted in Fig. 3.10. It can be seen that the impedance profile of 

the patch metasurface closely resembles the optimal case. This example illustrates the 

importance of incorporating the spectral variation of a surface impedance into the design 

process.  
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Fig. 3.9. Comparison of calculated total scattering width of a dielectric cylinder loaded with 

metasurface. Total scattering width of a PEC cylinder of radius 10 mm is shown with black 

dotted line.  

 

 

Fig 3.10. Dependency of the surface reactance of a dielectric cylinder loaded with 

metasurface on angular mode at 3 GHz. 

 

 

3.7 Influence of mutual coupling between metasurface layers  
 

As a final example, let us consider a two-layer cylindrical metasurface structure built from 

vertical strips. The intent of this example is to verify the proposed method on a multilayer 

design, and to investigate how close patterned sheets can be placed next to each other in order 

to still accurately model the structure using the ABCD transmission matrix approach. The 

approximation in the analysis method is that only the propagating (lowest-order) -modes are 

taken into account in the ABCD transmission matrix formulation. In other words, it is 

assumed that coupling between different metasurface layers occurs only through the 

considered propagating cylindrical mode with )exp( jm  variation, while higher-order Floquet 

modes (i.e. evanecent modes) are neglected. The higher-order Floquet modes are defined with 

azimuthal variation of the cylindrical mode  ,0 lNlmml 
 where N, is the number of 

periodic elements in -direction (strips in this case) and l is the Floquet-mode index. An 

equivalent assumption is commonly used in the planar case [32], [33].  
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Fig. 3.11.  Two-layer periodic strip-grid cylindrical structure. 

 

 

In this example, we fixed the outer radius of the structure (ρ2 = 114.6 mm) and the number 

and width of the strips in each layer (N,1  = N,2  = 24, W1 = W2 =1.15 mm), see Fig. 3.11. The 

working frequency was set to f = 4.0 GHz (i.e. strip period is 0.4 λ0) and the excitation to a 

TMz normally incident plane wave. The inner radius was selected to be 99.6 mm, 103.3 mm 

and 107.1 mm. Therefore, the distance between layers was 0.2λ, 0.15λ and 0.1λ, respectively. 

In Fig. 3.12, the calculated bistatic scattering width is plotted. There is good agreement 

between the two methods, the ABCD transmission matrix approach and the exact MoM code, 

even for close separation distances between the patterned sheets. The incoming plane wave is 

represented with 21 azimuthal modes, as suggested by the expression .)2( 20

max  N  

In order to estimate the distance at which higher-order evanescent modes should be taken 

into account, we calculated the EM field scattered by one strip layer and plotted the amplitude 

decay of the evanescent modes as a function of distance from the periodic strip grid (see Fig. 

3.13; the radial electromagnetic field variation is calculated using eq. (3.2)). We considered the 

field variation in the outside region; the amplitude of each mode is calculated using the exact 

MoM program for cylindrical structures. The dominant m = 0 mode is considered, thus the 

higher-order Floquet modes are defined with m = l·N,  l= 1, 2, 3. A comparison of Figures 

3.12 and 3.13, reveals that the analysis can be improved with the inclusion of the ABCD 

matrices that account for higher-order (evanescent) modes for dielectric thicknesses where the 

higher-order modes have relative amplitudes larger than approximately 0.1 at the position of 

neighboring metasurface layer. This can be done in the same way where both TE and TM 

modes are considered, as in the presented analysis method, see eqs. (3.6)-(3.9).  
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(a) 

 

(b) 

 

(c) 

Fig. 3.12. Scattered field from the two-layer periodic strip-grid structure; distance between 

two metasurface layers is: (a) 0.2 λ, (b) 0.15 λ, (c) 0.1 λ. 
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Fig. 3.13.  Decay of the amplitude of evanescent modes as a function of the distance from the 

periodic strip grid. 

 

 

3.8 Analysis of cascaded spherical metasurface structures  

 

In this section we will give the procedure how the considered analysis method is applied to 

spherical metasurface structures. Like in the cylindrical case the solution procedure makes use 

of the Fourier transformation technique. Since the problem is described in spherical 

coordinate system, we use the vector Legendre transformation in  and  directions, defined 

by [34], [30]: 
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By applying the vector Legendre transformation, the 3D excitations are transformed into 

harmonic current shells. If the source is infinitely thin in r-direction, we get one discrete 

current shell per source, otherwise we get a continuous distribution of current shells in r-

direction. The E- and H-fields induced by the harmonic current sources have the same 

harmonic variations in  and  as the source. Therefore, only the field variation in the 

direction perpendicular to the boundaries is unknown, and we have a harmonic one-

dimensional (1D) field problem. In this way, the spectral domain problem is interpreted as a 

1D spatial domain problem consisting of 1D multilayer structure and harmonic 1D sources in 

the form of current shells. 

The expressions for the field distribution can be determined by assuming the radial 

component of the electric and magnetic potential in the form [35]: 
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where ˆ
nJ   and  

(2)ˆ
nH  denote the Schelkunoff  type of the spherical Bessel and Hankel 

functions 
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Here we have assumed that the source is located at a sphere of radius rs in a homogeneous 

space. It can be shown that the field distribution in the spectral domain has a form 
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Therefore, in order to analyze cascaded spherical metasurface structures one can modify 

the solution procedure for cylindrical structures in the following way. The spectral-domain 

ABCD matrix of a constitutive sheet of the spherical metasurface is given by the following 

expression: 
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      (3.23) 

 

where both transverse electric (TEr) and transverse magnetic (TMr) waves according the 

radial direction are considered, which leads to a 4×4 ABCD matrix [4]. Like in the cylindrical 

case, the subscripts denote the corresponding components of the electric field and surface 

current, respectively. From the equation (3.22) it follows that the TMr waves contain Eθ, H  

and Er spectral components, while the TEr waves contain Hθ, E and Hr spectral components. 

It should be noted that all entries of the ABCD matrix are dependent on both elevation and 

azimuthal mode numbers n and m . 

The total fields in each dielectric layer can be written in terms of outward and inward 

travelling spherical waves (described with Schelkunoff Hankel functions of the first and 

second kind, see eq. (3.22)) as follows, 
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Here, α and β are the amplitudes of the propagating, spherical TMr and TEr waves in the 

considered dielectric layer (i.e. the Eθ and E  components without the radial dependence), 

respectively. The superscripts + and – denote outward and inward spherical waves. The 

ABCD matrix can be solved for by relating the field expressions at the two boundaries (inner 

with coordinate rn-1 and outer with coordinate rn) of the spherical transmission line: 
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It should be noted that the transmission-line part of the ABCD matrix is block-diagonal. In 

other words, if the Yθ  and Yθ  elements of the admittance matrix of each metasurface layer 

are equal to zero, then the TEr and TMr waves are uncoupled in the whole cascaded 

metasurface structure. 

The ABCD matrix of the multilayer spherical metasurface structure is obtained by simply 

multiplying the ABCD matrices of the cascaded cylindrical transmission lines (dielectric 

layers) and the sheets. From it, the scattered field can be easily determined. One simply needs 

to solve the following matrix equation:  
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Here, the ABCD matrices of the metasurface layers and the spherical transmission lines are 

symbolically written; r1 and rN are the inner and outer boundaries of the entire structure. 

Matrix equation (3.26) represents a system of 4 equations with 4 unknowns: the amplitudes of  
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E  and E  components at the inner and outer boundaries of the structure. The amplitudes of 

the H-components of the electromagnetic field are calculated using (3.22). 

As an example, let us consider a problem of scattering of EM waves from an impedance 

sphere. Assumed radius of the sphere is kr1 = 5, and the selected value of surface impedance 

is Z = j·0.15 η0. The intent of this example is to verify the developed spherical version of the 

code. The results are given in Figures 3.14 and 3.15. We considered two cases – when the 

spherical impedance surface is described with opaque and transparent surface impedance 

boundary conditions, respectively. In the first case (Fig. 3.14) we also compared the results of 

the developed multilayer&multi-metasurface code with the analytically calculated results 

given in [36]. It can be seen that there is perfect agreement between two sets of calculated 

results (further verification of the spherical version of the code will be given in Chapter 5). 

Furthermore, two different versions of impedance surface, opaque and transparent, give 

similar scattering radiation patterns (Fig 3.15). 

 

 
(a) 

 
(b) 

 

Fig. 3.14. Comparison of calculated bistatic scattering cross section of a sphere with opaque 

surface impedance boundary condition; (a) E-plane, (b) H-plane. 
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(a) 

 
(b) 

 

Fig. 3.15. Comparison of calculated bistatic scattering cross section of a sphere with opaque 

and transparent surface impedance boundary condition; (a) E-plane, (b) H-plane.  
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Modeling cascaded curved metasurfaces with non-

homogeneous surface impedance 
 

 

 

In the previous section we have described the method for analyzing curved metasurface 

structures for the cases when the value of metasurface sheet impedance do not spatially vary, 

(i.e. it is homogeneous). Such structures are suitable for building different devices, such as 

electromagnetic cloaks. However, for antenna applications, the designers would like to use 

metasurface sheets with spatially varying value of sheet impedance. Therefore, the proposed 

analysis method should be modified to include this possibility.  

The importance of including spatially-varying curved metasurfaces into the analysis and 

design process is twofold. If the considered metasurfaces are used for manipulating the 

transmitted electromagnetic waves then in most of cases the value of sheet impedance is 

spatially varying. In other words, without this possibility it would be difficult to analyse such 

structures. The other reason is specific for canonical curved structures: the metasurface is 

usually placed on a part of the canonical surface only (e.g. on a part of a cylinder or a sphere). 

Such possibility is easily treated with the proposed approach (as will be explained in this 

chapter): at the part of a canonical surface without a metasurface layer the value of the surface 

sheet admittance is set to zero. Two examples of such structures are shown in Fig. 4.1. The 

considered dome antenna, used for correction of gain of the transmitting array can be placed 

concentrically around the array (i.e. the origin of the dome coordinate system is in the middle 

of the transmitting array), or the centre of dome antenna can be much below the centre of the 

transmitting array - in that case a low-profile dome antenna is obtained. Note that the 

correction of antenna gain can be significantly different: the metasurface dome can be used 

for example for flattening the gain of scanning beam (the “classical” dome design), or can be 

used to enhance the antenna gain. 

 

  

(a)                                                  (b) 

Fig. 4.1 Geometry of metasurface dome antenna; (a) concentric half-cylinder or half-sphere, 

(b) low-profile realization. 
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This section is organized as follows. First, we will consider one spatially-varying 

metasurface sheet in free-space and discuss four different analysis methods. Then we will 

generalize two methods to include multilayer dielectrics and metasurface sheets. Like in the 

previous section the analysis method will be given for circular-cylindrical structures, which 

can be easily modified for other types of geometries (spherical, BoR-type of structure, etc.)  

 

 

4.1 Single-layer curved non-homogeneous metasurface sheet in free-space   
 

The geometry of the problem is shown in Fig. 4.2. The considered meteasurface is non-

homogeneous in -direction and homogeneous in the axial direction (this assumption can be 

easily generalized in the same way the -directed non-homogeneity is analyzed). The 

metasurface is located in the free space and it is excited from the central axes, i.e. the 

excitation is a line source (the general excitation will be treated in the next section). Without 

losing the generality we assume that the excitation current is constant in axial direction, i.e. 

that the 0inc

zk  . Therefore, the incident field is equal: 

 

 (2)0 0
0 0( , ) ( )

4

inc

z

k
E H k I


         (4.1.a) 

(2)0
1 0 0( , ) ( )

4

inc k
H j H k I      .    (4.1.b) 

 

Here I0 is the amplitude of the line source. Under these assumptions we can write the field 

distribution in the inner and outer region:  

 

 

 

Fig. 4.2. Geometry of curved metasurface structure with spatially-varying value of surface 

sheet impedance. 
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(a) the inner region  
 

(2) (1)0 0
0 0 0 0( , ) ( ) ( )

4

tot inc scat

z z z

tot

z m m

m

E E E

k
E H k I a J k


   





 

   
   (4.2.a) 

 

 (2) (1)0
1 0 0 0

0

( , ) ( ) ( )
4

tot inc scat

tot

m m

m

H H H

jk j
H H k I a J k

  

    






 

 
    

 


  (4.2.b) 

 

(b) the outer region 
 

(2) (2) (2)0 0
0 0 0 0( , ) ( ) ( )

4

tot inc scat

z z z

tot

z m m

m

E E E

k
E H k I a H k


   





 

   
  (4.3.a) 

 

 
(2) (2) (2)0
1 0 0 0 0

0

( , ) ( ) ( )
4

tot inc scat

tot

m

m

H H H

jk j
H H k I a H k

  

    






 

      
 


  (4.3.b) 

 

Here 
(1)

m and 
(2)

m  are the amplitudes of the spectral-domain scattered field components in the 

inner and outer region, respectively. Note that the Hz and E components are equal to zero for 

the considered metasurface structure and line source excitation. The relation between the 

electric and magnetic field is derived from the following expressions (see eq. (3.3)): 
 

0 0

( , ) ( , )z

j
H E

k
    

 


 


     (4.4) 

 

Without losing generality we will assume that the considered metasurface has electric response 

only.  The generalization to metasurfaces with magnetic response (loop or slotted metasurface 

elements) is straightforward. Under this assumption, the boundary condition needed to be 

satisfied is the following: 
  

 ˆ ˆ ˆ( , ) ( ) ( , )meta metaZ            
 

E H    (4.5) 

 

Here we have assumed that the surface impedance is non-homogeneous in the -direction, i.e.  

( , , ) ( )metaZ z Z   . Therefore, we got the following system of equations to be solved (the 

indexes (1) and (2) denote the inner and outer region, respectively): 
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,(1) ,(2)( , ) ( , )scat scat

z meta z metaE E                (4.6.a) 

,(2) ,(2) ,(1)( , ) ( , ) ( ) ( , ) ( , )inc scat scat scat

z meta z meta zz z meta z metaE E Z H H             ,      (4.6.b) 

 

or in more details: 
 

(1) (2) (2)

0 0

1 1
( ) ( )

2 2

jm jm

m m meta m m meta

m m

J k e H k e    
 

 
 

 

           (4.7.a) 

 

(2) (2) (2)0 0
0 0 0 0

(2) (2) (1)

0 0

0

1
( ) ( )

4 2

1 1
( ) ( ) ( ) .

2 2

jm

meta m m meta

m

surf jm jm

zz m m meta m m meta

m m

k
H k I H k e

j
Z H k e J k e



 


  



    
  






 
 

 

 

        
  



 
  (4.7.b) 

 

The first equation (boundary condition) can also be expressed in the spectral domain – the 

amplitude of each spectral component should be matched at the boundary: 
 

(1) (2) (2)

0 0( ) ( )m m meta m m metaJ k H k           (4.8) 

 

The cylindrical metasurface can be placed only at the part of the cylindrical tube (the rest 

can be just air). Therefore, for that part of cylindrical tube we can impose the following 

boundary condition: 
 

ˆ ( , ) 0metaH           (4.9) 

or 
 

(2) (2) (1)

0 0

1 1
( ) ( ) 0

2 2

jm jm

m m meta m m meta

m m

H k e J k e    
 

 
 

 

      (4.10) 

 

Both boundary conditions can be merged into one boundary condition by assuming that the 

surface sheet admittance is equal to zero at the part of the cylindrical tube without 

metasurface: 
 

 ˆ ˆ ˆ( ) ( , ) ( , )meta metaY            
 

E H       (4.11) 

 

This solution procedure can be rewritten using the Green’s function approach that is 

suitable for multilayer structures containing cascaded metasurface sheets. The question is 

what type of Green’s function has the unit (i.e. desired) value of the electric field and 

introduce the discontinuity in the magnetic field. The solution is that we need to use two 

separate Green’s functions, one for the inner region, and another for the outer region. The 

inner/outer region should be bounded with the PEC-cylinder (PEC - perfect electric 

conductor) and the excitation will be the tangential magnetic current just above/below the 

PEC-cylinder 
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ˆˆ ˆ( ) ( , ),scat

eq metan n       M E     (4.12) 

 

Using notation 
(1) (2) (2)

0 0( ) ( )m m m meta m m metaJ k H k       we can express the z-component of 

the tangential E-field as: 
 

1
( , )

2

jm

z meta m

m

E e   







       (4.13) 

 

The solution procedure can be rewritten using the Green’s functions as:  
 

EM,in EM,out

1
( , )

2

1 1
( , ) ( , )

2 2

jm

z meta m

m

jm jm

m z meta meta m z meta meta

m m

E e

G m e G m e



 

 

  


     
 






 
   

 



  



 
    

(4.14.a) 
 

(2)0 0
0 0 0

HM,out HM,in

1
( ) ( )

4 2

1 1
( , ) ( , )

2 2

jm

zz meta m

m

jm jm

m meta meta m meta meta

m m

k
Y H k I e

G m e G m e



 

 


  



     
 






 
   

 

 
   
 

 



 
    

(4.14.b) 
 

Here meta 
and meta 

 denote the radial coordinate slightly larger and smaller than the 

metasurface radial coordinate, respectively. In general case the above equations can be written 

as: 
 

1 1ˆ ˆ( , )
2 2

jm z jm

meta m m

m m

e z e      
 

 
 

 

  E           (4.15.a) 
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 
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 

     


 
 

 


  



 
   
 

           

 



E

  

(4.15.b) 
 

Equation (4.14) is the basis for the first proposed analysis method. The unknowns in eq. 

(4.14) are the spectral-domain values αm of the E-field at the metasurface. If we determine the 

limit in summation as Mmax then we need to select 2·Mmax+1 observation points to obtain a 

linear system of 2·Mmax+1 equations with 2·Mmax+1 unknowns. The minimum number for 

Mmax is int(k0ρmeta), more accurate results are obtained with Mmax=2· int(k0ρmeta). Usually, one 
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observation point is located at each metasurface cell; however, if the selected Mmax is large, 

more than one observation point can be located at each metasurface cell. Therefore, the first 

proposed analysis method can be described with the following equation 
 

max

max

max max

max max

(2)0 0
0 0 0

HM,out HM,in

max

1
( ) ( )

4 2

1 1
( , ) ( , ) ,

2 2

1, , 2 1.

n

n n

M
jm

zz n meta m

m M

M M
jm jm

m meta meta m meta meta

m M m M

k
Y H k I e

G m e G m e

n M



 

 


  



     
 





  

 

 
   
 

 

  



   

(4.16) 
 

The boundary condition (4.11) can be fulfilled in the spectral domain as well. Using the 

convolution property of Fourier transformation, we obtain 
 

 ˆ ˆ ˆscat inc scatY n            
E E H ,         (4.17) 

or 
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 
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         (4.18) 

 

Therefore, the second proposed analysis method is described with the following equation: 
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 

 
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        (4.19) 

 

Again, we have a linear system of 2·Mmax+1 equations with 2·Mmax+1 unknowns; the 

unknowns are again the spectral-domain values αm of the E-field at the metasurface.  

The proposed two analysis methods are not so practical if we want to generalize it for 

multilayer case with cascaded metasurfaces with both electric and magnetic responses due to 

large number of different geometries for which we need to determine the Green’s functions 

(for magnetic response the inner/outer region should be bounded with the PMC-cylinder). 

Therefore, we would like to simplify the procedure (if possible). 

Metasurfaces with electric response introduce the discontinuity in the tangential magnetic 

field, therefore it can be modeled with induced surface electric currents:  
 

ˆˆ ( )av n      J H H H .      (4.20) 
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The boundary condition (4.11) now can be rewritten in the following way 
 

 ˆ ˆ( ) ( , ) ( )meta avY         
 

E J ,    (4.21) 

 

or in more details 
 

1 1
ˆ ˆ( ) ( ) ( , ) ( ) ( ) .

2 2

inc EJ jm jm

meta meta av av

m m

Y G m m e m e      
 

 
 
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    
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    
 E J J

(4.22) 
 

Now the unknowns are the spectral-domain components of the averaged surface current. The 

used Green’s function is “the normal one”, i.e. the E-field due to electric current in considered 

multilayer structure without metasurface sheets (free space in this case). For the considered 

metasurface structure and line source excitation the upper equation can be written (the third 

proposed analysis method): 
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The boundary condition (4.20) can also be written in the spectral domain: 
 

ˆ ˆ( ) ( , ) ( )meta avY m m m            
E J ,    (4.24) 

 

or in more details 
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For the considered metasurface structure and line source excitation, the upper equation can be 

written (the fourth proposed analysis method) as: 
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(4.25) 
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Let us illustrate all four proposed methods on one example. Let us consider a single-layer 

cylindrical metasurface printed on a thin substrate (εr = 2.55, h = 0.13 mm). The metasurface 

contains 24 inductive cells that are in practice realized using stripes or meander lines. The 

radius of the cylinder is 6 cm and the width of each cell is 7.854 mm, i.e. only half of the 

cylinder is covered with the metasurface structure. The variation of the surface sheet 

impendance and the practical realization is shown in Figure 4.3. The detailed description and 

measurement results will be given in the Section 6. Measured results. 

The comparison of radiated field, calculated using different computational methods, is 

given in Fig. 4.4.a. The excitation was the omnidirectional line source (in practice, a 

monopole antenna was used as an excitation). All four methods give almost identical results 

that are not possible to distinguish. Therefore, we have shown only the comparison of the two 

methods in which the unknown is the surface sheet current in the spectral domain, and where 

the boundary conditions are tested in the spatial and spectral domains (named combined-

domain method and spectral-domain method, respectively). As additional comparison the 

results calculated by CST Microwave Studio [37] and measured results are given in Fig. 4.4.b. 

Note that with the CST MS we have modeled the “real” structure from Fig. 4.3.b, i.e. with no 

simplification of metasurface structure using sheet impedance approach. The agreement of the 

two calculation methods with both CST calculations and measurements is very good.  
 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Fig. 4.3.  Single-layer metasurface; (a) variation of the surface sheet impendance, (b) 

practical realization. 
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(a) 

 

 

Fig. 4.4.  (a) Comparison of the considered spectral domain methods in which the boundary 

conditions are tested in the spatial and spectral domains (named combined-domain method 

and spectral-domain method, respectively); (b) Comparison of the spectral-domain method 

(all four versions) and the calculated results obtained by CST Microwave Studio and 

measured results. In the last two cases the “real” structure shown in Fig. 4.3.b was modelled 

and measured. 
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4.2 Cascaded curved non-homogeneous metasurface sheets embedded into a multilayer 

structure    
 

The single-layer formulation based on the surface current approach (i.e. the third and 

fourth analysis method presented in the previous section) is suitable for generalization to be 

able to analyze cascaded non-homogeneous metasurface structures. The approach based on 

the fulfilling the boundary conditions in the spatial domain, for the cascaded case is the 

following:   
 

max

max

max

max

1

max

1
ˆ ( , ) ( , ) ( , , ) ( )

2

1
ˆ ( ) 1, , 2 1; 1, ,

2

layer

n

n

N M
jmj inc j EJ j i i

meta n meta n meta meta av

i m M

M
jmj

av layer

m M

Y G m i m e

m e n M j N





      







 





  
     
   

 
      

 

 



E J

J

(4.26) 
 

Here the superscript j in the quantities 
j

meta  and 
j

avJ denotes the number of the cascaded 

metasurface layer (the total number of metasurface layers is Nlayer). In the matrix form the 

equation (4.26) looks like (e.g. in total for three metasurface layers and for the case when the 

excitation and the surface currents are in the z-direction): 
 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

Z Z Z I V

Z Z Z I V

Z Z Z I V

                            
                        
     
                            

   (4.27) 

 

Again, the superscript denotes the metasurface layer where we test the boundary condition 

and where the surface current is located. The elements of the Z sub-matrices and of the 

excitation vector are equal: 
 

max, 1 ,

1 1
( ) ( , )

2 2
n njm jmji j EJ j i

n m M zz meta n meta meta j iZ Y G m e e
     

 

 

 

 
   

 
      (4.28.a) 

 

( , ) ( , )j j inc j

n zz meta n z meta nV Y E            (4.28.b) 

 

The result is the spectral-domain amplitudes of the surface current: , ( )i i

m z avI J m . 

The approach based on the fulfilling the boundary conditions in the spectral domain, for 

the cascaded case is the following:   
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max

max 1

max max

1
ˆ ( , ) ( , ) ( , ) ( )

2

ˆ ( ) ,

, , ; 1, , .

layerNM
j inc j EJ j i i

meta meta meta meta av

m M i

j

av

layer

Y n m m G m m

n

n M M j N

    




 

  
      
   

    

  

 E J

J       

(4.29) 
 

The matrix form of the equation (4.29) is the following (e.g. for totally three metasurface 

layers and for the case when the excitation and the surface currents are in the z-direction): 
 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

Z Z Z I V

Z Z Z I V

Z Z Z I V

                            
                        
     
                            

   (4.30) 

 

The elements of the Z sub-matrices of and of the excitation vector are now: 
 

max max1, 1 , ,

1
( ) ( , )

2
njmji j EJ j i

n M m M zz meta meta meta j iZ Y n m G m e
   





            (4.31.a) 

max

max

1
( , ) ( , )

2

M
j j inc j

n meta meta

m M

V Y n m m 
 

    E                     (4.32.b) 

 

Like in the previous case the result is the spectral-domain amplitudes of the surface current: 

, ( )i i

m z avI J m . 

The excitation incident field can be determined using the equivalence principle. For 

example, if the source is located inside the metasurface structure (e.g. at the axis of the 

structure) then we can surround the source with an equivalent cylindrical surface with a radius 

smaller that the metasurface structure (see Fig. 4.5.). Then we can define the equivalent 

excitation currents at that surface using the fields radiated by the feed antenna into the free 

space (by this we do not take into account the coupling between the excitation antenna and the 

metasurface, but usually this coupling is small and thus it is not needed to be taken into 

account). Note that the arbitrary feed antenna for which we want to find the excitation 

incident field can be characterized either by measurements (often performed by the 

manufacturer) or by analysis using e.g. a general EM solver. Quite often we have only the E-

field of the excitation field – in that case we need to use PEC equivalence principle. 

Therefore, for such a case the excitation incident field is equal: 

2

free
space0

,

ˆ( , ) ( ( , )) ,

( , ) ( , ) ( , ).

inc inc inc jm

eq eq

inc EM out inc inc

eq eq

m e d

m G m m



    

   

  

 

M E

E M

     (4.33) 
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Here 
,EM outG is the Green’s function of the considered metasurface structure with additional 

symmetrically located PEC cylinder of radius .inc

eq  

 

 

 

 

 

 
 

Fig. 4.5. Sketch of the excitation model based on the equivalence principle. 

 

 

4.3 Comparison of two approaches of calculating metasurface sheet impedance  
 

In this section we would like to compare two approaches to define sheet impedance of a 

metasurface, both of them related to the spectral domain. In the first approach, when the 

surface is homogenous (i.e. not spatially-varying) the surface impedance is defined via 

response to different impinging cylindrical waves. In other words, for each cylindrical 

harmonic of excitation we need to solve one-dimensional problem – variation of the EM field 

in the radial direction (both the  and axial variations are defined with the source variation). 

In the second case, when considering the spatially-varying metasurface, we need to determine 

the variation of the sheet impedance with -coordinate. If we use the convolution approach 

the sheet impedance in the spectral domain is part of formulation, i.e. we need to perform the 

Fourier series of the sheet impedance in the spatial domain. Although both expressions are 

related with the spectral domain, they are fundamentally different. That can be seen in the 

example of longitudinal strips placed at the dielectric rod (the example described in Fig. 3.2).  

We started the comparison with the response on impinging cylindrical waves (Figure 4.6.a; 

the way how it is calculated is explained in Chapter 3). The considered example is the same as 

the one described in Figures 3.2 – 3.4; the working frequency is 10 GHz. The spatial variation 

of the surface impedance (and therefore the value of the effective surface impedance) can be 

determined by transforming E- and H-field back to the spatial domain. In Figure 4.6.b. it can 

be seen that in the first case of longitudinal strips there is in principle no variation of surface 

impedance and its value is similar to the response to the zero-mode cylindrical harmonic 

(Zzz(m=0) = 83.76 Ω; also shown in the Figures 4.6.a and 4.6.b). However, if we calculate the 

spectral-domain surface impedance we will get only the strong zero-order mode since 

practically there is no -variation of the surface sheet impedance (Fig. 4.6.c). This shows the 


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difference between surface impedance in spectral domain and surface impedance calculated as 

a response to one spectral component of impinging field. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.5. Comparison of two approaches of calculating metasurface sheet impedance: (a) 

response to the different mode of impinging cylindrical wave; (b) spatial variation of 

metasurface sheet impedance; (c) Fourier transformation of spatial variation of metasurface 

sheet impedance (spectral-domain metasurface sheet impedance).   
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Analysis of Body-of-Revolution (BoR) metasurface 

structures 
 

 

 

The rigorous numerical analysis of axially-symmetric metasurface components will be 

performed using the Electric Field Integral Equation (EFIE). Although this report will focus 

on axially-symmetric metasurface structures, presented formulation can be applied to other 

axially-symmetric geometries (e.g., cylindrical antennas and scatterers, metallic spheres, etc.). 

The axially-symmetric configurations are commonly referred to as Bodies of Revolution 

(BoR), i.e. these geometries are obtained by rotating generating curves about a single axis of 

symmetry, as illustrated in Fig. 5.1. The analysis and design of BoR structures is inspired by 

the work of Andreasen [38], Harrington and Mautz [39]-[41], Wu and Tsai [42], Wilton and 

Glisson [43]-[44], and Moreira [45]. 

 

 

5.1 Geometry of the BoR problem 
 

The BoR surface is defined by its generating curve rotated about the BOR axis of 

symmetry, as shown in Fig. 5.1. We shall assume that the axis of symmetry coincides with the 

z-axis of the principal coordinate system. Also we shall define an orthogonal curvilinear 

coordinate system over the BoR surface. This coordinate system has the orthonormal base 

vectors 𝑡̂, 𝜙̂ and 𝑛̂, where 𝑡̂ is the unit vector tangent to the surface and pointing along the 

generating curve, 𝜙̂ is the unit vector tangent to the surface and pointing along the 

circumferential direction, and 𝑛̂  is the unit vector normal to the BoR surface, such that 

𝑛̂ = 𝜙̂ × 𝑡̂ (see Fig. 5.1). Note that 𝑛̂ points outwards a closed BoR surface (i.e., towards the 

region where the excitation sources are located). The connection between these unit directions 

and the cylindrical coordinates of the principal coordinate is given with  
 

 𝑡̂ =  sin 𝑢 𝜌̂ + cos 𝑢 𝑧̂, (5.1) 

   

 𝑛̂ = 𝜙̂ × 𝑡̂ = cos 𝑢 𝜌̂ − sin 𝑢 𝑧,̂ (5.2) 

 

where 𝑢 is the angle between 𝑡̂ and 𝑧̂, as illustrated in Fig. 5.1.  
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(a) 

 

 

(b) 
 

Fig. 5.1. The BoR geometry. (a) 2D view of generating curve with segmentation points; (b) 

scattering from a BoR dielectric body. 

 

 

5.2 Formulation of the Electric Field Integral Equation 
 

In order to find the appropriate numerical formulation let us first consider the basic BoR 

structure shown in Figure 5.1.b,  i.e. the basic electromagnetic problem we would like to solve 

is to determine the scattered field from a rotationally symmetric dielectric body. We will 

assume a linear, homogeneous, and isotropic medium from which the dielectric body is 

realized. For this case the electromagnetic field at a given observation point outside a closed 

and finite region can be entirely determined by the prior knowledge of the electromagnetic 

behavior over the closed-region surface plus the radiation characteristics of any source located 
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outside the region (according to the Love’s equivalence principle [35]). This is given by the 

Stratton-Chu formula [46], where the BoR surface defines the closed region. If we write this 

for the electric field we shall obtain the Electric Field Integral Equation (EFIE) which is given 

by: 
 

(a) if the observation point  𝑟  is in the outside region: 

𝐸⃗⃗𝑡𝑜𝑡𝑎𝑙(𝑟) = 𝐸⃗⃗𝑖𝑛𝑐(𝑟)

−
𝑗

4𝜋𝜔𝜀0
  ∮{𝑘0

2𝐽(𝑟′)Ψ0 − 𝑗𝜔𝜀𝑀⃗⃗⃗(𝑟
′) × ∇′ Ψ0 − [∇

′𝐽(𝑟′)]∇′Ψ0}𝑑𝑆
′ 

𝑆′

 
(5.3.a) 

 

(b) if the observation point  𝑟  is in the inside region:  

𝐸⃗⃗𝑡𝑜𝑡𝑎𝑙(𝑟) =
𝑗

4𝜋𝜔𝜀0𝜀𝑟
 ∮{𝑘1

2𝐽(𝑟′)Ψ1 − 𝑗𝜔𝜀0𝜀𝑟 𝑀⃗⃗⃗(𝑟
′) × ∇′ Ψ1

𝑆′

− [∇′𝐽(𝑟′)]∇′Ψ1}𝑑𝑆
′. 

(5.3.b) 

 

where S' represents the BoR closed surfaces, 𝑟 locates the observation point, 𝑟′ locates the 

source point over 𝑆′, and Ψ is the scalar Green’s function: 
 

 
Ψ𝑖 =

𝑒−𝑗𝑘𝑖𝑅

𝑅
, (5.3) 

 

where 𝑅 = |𝑟 − 𝑟′| and 𝑘𝑖 =
2𝜋

𝜆
= 𝜔√𝜇0𝜀0𝜀𝑟,𝑖 with 𝜆 being the wavelength in the medium of 

interest.  Here, the configurations to be analyzed are always surrounded by the homogeneous 

space described with relative permittivity 𝜀𝑟,𝑖. Furthermore, in the equivalent problems, the 

equivalent electric and magnetic equivalent currents are defined using the values of the 

electromagnetic field at the boundary as 
 

 𝑛̂ × 𝐻⃗⃗⃗(𝑟′) = 𝐽 (𝑟′⃗⃗⃗), (5.4) 

 𝑛̂ × 𝐸⃗⃗(𝑟′) = −𝑀⃗⃗⃗(𝑟′), (5.5) 

 

respectively. Here 𝑛̂  is the unit surface normal at 𝑟′ pointing outwards. By using these 

equivalent currents the original electromagnetic problem is transferred into two equivalent 

problems, such that the electromagnetic field in the considered BoR region is identical to the 

one in the original problem. Therefore, in the case of basic two-region BoR problem (see Fig. 

5.1.b) the EFIE results from the continuity of the tangential component of the E-field at the 

BoR boundary: 
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𝑛̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟) =
𝑗

4𝜋𝜔𝜀0
𝑛̂ × ∮{𝑘0

2𝐽(𝑟′)Ψ0 − 𝑗𝜔𝜀0𝑀⃗⃗⃗(𝑟
′) × ∇′Ψ0 − [∇

′𝐽(𝑟′)]∇′Ψ0}𝑑𝑆
′

𝑆′

   

+
𝑗

4𝜋𝜔𝜀0𝜀𝑟
𝑛̂ × ∮{𝑘1

2𝐽(𝑟′)Ψ1 − 𝑗𝜔𝜀0𝜀𝑟 𝑀⃗⃗⃗(𝑟
′) × ∇′Ψ1 − [∇

′𝐽(𝑟′)]∇′Ψ1}𝑑𝑆
′.

𝑆′

 

(5.7) 

Here Ψ0 and Ψ1 are the scalar Green’s functions for homogeneous space with permittivity 𝜀0  
and 𝜀0𝜀𝑟 ,  respectively. Using the duality principle a similar equation can be derived for the 

magnetic field (MFIE): 
 

𝑛̂ × 𝐻⃗⃗⃗𝑖𝑛𝑐(𝑟) =
𝑗

4𝜋𝜔𝜇0
𝑛̂ × ∮{𝑘0

2𝑀⃗⃗⃗(𝑟′)Ψ0 + 𝑗𝜔𝜇0𝐽(𝑟
′) × ∇′Ψ0 − [∇

′𝑀⃗⃗⃗(𝑟′)]∇′Ψ0}𝑑𝑆
′

𝑆′

   

+
𝑗

4𝜋𝜔𝜇0𝜇𝑟
𝑛̂ × ∮{𝑘1

2𝑀⃗⃗⃗(𝑟′)Ψ1 + 𝑗𝜔𝜇0𝜇𝑟𝐽(𝑟
′) × ∇′Ψ1 − [∇

′𝑀⃗⃗⃗(𝑟′)]∇′Ψ1}𝑑𝑆
′.

𝑆′

 

 

(5.8) 
 

The unknown quantities in the eqs. (5.7) and (5.8) are the equivalent electric and magnetic 

currents 𝐽(𝑟) and 𝑀⃗⃗⃗(𝑟)  that can be determined using e.g. the moment method (MoM) 

technique. Since the MFIE can always be simply derived from EFIE using the duality 

principle, we will give in the rest of the section the expressions only for EFIE part of 

formulation.  

The presence of a metasurface can be included by modifying the EFIE in the following 

way. Without losing the generality we assume that the metasurface is located in a 

homogeneous space. As explained in the Introduction we will focus our analysis to 

metasurfaces that have  only an electric response, and they can be modelled with induced 

surface electric currents. The generalization to magnetic surface currents (loop or slotted 

metasurface elements) is straightforward.  

The metasurface layer is modeled using a transparent surface impedance formulation (the 

geometry of the problem is shown in Fig. 5.1): 
 

𝑛̂ × 𝐸⃗⃗(𝑟) = 𝑛̂ × [𝑍̿(𝑟) ∙ (𝑛̂ × (𝐻⃗⃗⃗+(𝑟) − 𝐻⃗⃗⃗−(𝑟)))]   (5.9) 
 

Here, 𝐸⃗⃗ denotes the average electric field at the metasurface layer,  𝐻⃗⃗⃗+ and  𝐻⃗⃗⃗−are the average 

magnetic fields at the outer and inner metasurface boundaries, 𝑍̿ is the surface impedance 

tensor, and 𝑛̂ is the outward pointing unit vector, normal to the metasurface layer. In the 

considered coordinate system, the surface impedance tensor can be expressed as 
 

𝑍̿(𝑟) = [
𝑍𝑡𝑡(𝑟) 𝑍𝑡𝜙(𝑟)

𝑍𝜙𝑡(𝑟) 𝑍𝜙𝜙(𝑟)
]           (5.10) 
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where the subscripts denote the corresponding components of the electric and magnetic field, 

respectively. 𝑍̿ is not a constant tensor but rather depends on the spatial coordinate and on the 

properties of the impinging electromagnetic wave. For instance, in the planar case, it depends 

on the angle of incidence of the impinging electromagnetic wave.  

The EFIE for a structure with a metasurface sheet in a homogeneous space is given by 
 

𝑛̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟) = 𝑛̂ × (𝑍̿(𝑟) ∙ 𝐽𝑎𝑣(𝑟)) +
𝑗

4𝜋𝜔𝜀0
𝑛̂

× ∮{𝑘0
2𝐽𝑎𝑣(𝑟

′)Ψ − 𝑗𝜔𝜀0𝑀⃗⃗⃗𝑎𝑣(𝑟
′) × ∇′Ψ − [∇′𝐽𝑎𝑣(𝑟

′)]∇′Ψ}𝑑𝑆′.

𝑆′

 
(5.11) 

 

Here the averaged electric and magnetic current densities take into account the discontinuity 

of the EM field due to presence of the transparent metasurface sheet: 
 

 𝐽𝑎𝑣(𝑟) = 𝑛̂ × (𝐻⃗⃗⃗
+(𝑟) − 𝐻⃗⃗⃗−(𝑟)) (5.12) 

 𝑀⃗⃗⃗𝑎𝑣(𝑟) = −𝑛̂ × ( 𝐸⃗⃗
+(𝑟) − 𝐸⃗⃗−(𝑟)). (5.13) 

 

For the case of a metasurface electric response only the magnetic current is equal to zero, i.e. 

the tangential E-field is continuous at the metasurface (𝑀⃗⃗⃗𝑎𝑣(𝑟) ≈ 0). If the opaque  

metasurface sheet is present then the electric and magnetic current densities take into account 

the discontinuity of the EM field are equal: 
 

 𝐽𝑎𝑣(𝑟) = 𝑛̂ × 𝐻⃗⃗⃗+(𝑟) (5.14) 

 𝑀⃗⃗⃗𝑎𝑣(𝑟) = −𝑛̂ × 𝐸⃗⃗
+(𝑟). (5.15) 

 

 

5.3 The Method of Moments (MoM) 
 

In this section, the MoM technique is applied to the numerical solution of Eq. (5.7) or 

(5.10). The considered technique is basically based on transforming the integral equation into 

a system of linear algebraic equations. 

First the unknown electric and magnetic currents 𝐽(𝑟′) and 𝑀⃗⃗⃗(𝑟′) are represented by a 

finite summation of known basis functions 𝐽𝑗(𝑟
′) and 𝑀⃗⃗⃗𝑗(𝑟

′), respectively: 
  

  

𝐽(𝑟′) =∑𝛼𝑗𝐽𝑗

𝑁

𝑗

(𝑟′),       𝑀⃗⃗⃗(𝑟′) =∑𝛽𝑗𝑀⃗⃗⃗𝑗

𝑁

𝑗

(𝑟′), (5.16) 
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Here 𝛼𝑗 and 𝛽𝑗 are the unknown coefficients (complex amplitudes) that need to be 

determined. The substitution of Eq. (5.16) into Eq. (5.7) yields 
 

 

𝑛̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟) =∑𝛼𝑗𝐿
𝐽(𝐽𝑗) +∑𝛽𝑗𝐿

𝑀(𝑀⃗⃗⃗𝑗)

𝑁

𝑗

𝑁

𝑗

, (5.17) 

where 

𝐿𝐽(𝐽𝑗) =
𝑗

4𝜋𝜔𝜀0
𝑛̂

× ∫ {𝑘0
2𝐽𝑗(𝑟

′)Ψ0 + 𝑘0
2𝐽𝑗(𝑟

′)Ψ1 − [∇
′𝐽𝑗(𝑟

′)]∇′Ψ0 −
1

𝜀1
[∇′𝐽𝑗(𝑟

′)]∇′Ψ1} 𝑑𝑆
′

𝑆′

 
(5.18) 

 

 𝐿𝑀(𝑀⃗⃗⃗𝑗) = −
1

4𝜋
𝑛̂ × ∮{𝑀⃗⃗⃗(𝑟′) × ∇′Ψ0 + 𝑀⃗⃗⃗(𝑟

′) × ∇′Ψ1}𝑑𝑆
′                     

𝑆′

   (5.19) 

 

To obtain the unknown coefficients 𝛼𝑗 and 𝛽𝑗, the boundary condition (5.17) is enforced over 

𝑆 by means of weighting the equation with the test functions 𝑊⃗⃗⃗⃗𝑖(𝑟):  
 

 

∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ [𝑛̂ × 𝐸⃗⃗
𝑖𝑛𝑐(𝑟)]𝑑𝑆

𝑆

=∑𝛼𝑗∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝐿
𝐽(𝐽𝑗)𝑑𝑆 +∑𝛽𝑗∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝐿

𝑀(𝑀⃗⃗⃗𝑗)𝑑𝑆

𝑆

𝑁

𝑗𝑆

𝑁

𝑗

. 

(5.20) 

 

The MoM matrix equation is finally obtained  
 

 [𝑉] = [𝑍][𝐼],  

(5.21) 

 

where the 𝑖-th element of the column matrix [𝑉] is given by: 
 

 

𝑉𝑖 = ∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝐸⃗⃗
𝑖𝑛𝑐(𝑟)𝑑𝑠

𝑆

 
 

(5.22) 

 

and the elements of the MoM matrix are given by 

DISTRIBUTION A:  Distribution approved for public release



Analysis and Design of Curved Metamaterial Structures   54 

 

𝑍𝑖𝑗 = ∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝐿
𝐽(𝐽𝑗)𝑑𝑆      or      𝑍𝑖𝑗 = ∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝐿

𝑀(𝑀⃗⃗⃗𝑗)𝑑𝑆

𝑆𝑆

. 

 

(5.23) 

 

The correct choice of the basis and weighting functions influences the convergence properties 

of the MoM. Here, the used basis and weighting functions are the local triangle and pulse 

functions. The 𝑡̂-oriented electric currents are represented by triangle basis functions (by this 

the continuity of the current in 𝑡̂-direction is ensured), while the 𝜙̂-directed electric currents 

are represented by pulse basis functions (the continuity the 𝜙̂-directed current is ensured by 

applying the Fourier series in the 𝜙̂-direction, see below). For example, the electric current 

can be represented as (see Figure 5.2.): 
 

 

 

 

𝐽𝑗(𝑟
′) = ∑ {∑𝛼𝑛𝑗

𝑇
𝑇𝑗(𝑡

′)

𝜌′
𝑒𝑗𝑛𝜙

′
𝑡̂′

𝑁𝑇

𝑗=1

+∑𝛼𝑛𝑗
𝑃
𝑃𝑗(𝑡

′)

𝜌𝑗
𝑒𝑗𝑛𝜙

′
𝜙̂′

𝑁𝑃

𝑗=1

} ,

∞

𝑛=−∞

 (5.24) 

 

where 𝑡̂′ and 𝜙̂′ are the unit vectors at the source point 𝑟′ over the surface 𝑆′, 𝑇𝑗(𝑡
′) and 

𝑃𝑗(𝑡
′) are the triangle and pulse basis functions, respectively, 𝑁𝑇 and 𝑁𝑃 are the total number 

of triangle and pulse basis functions, respectively, and 𝛼𝑛𝑗
𝑇 , and 𝛽𝑛𝑗

𝑃  are the unknown complex 

coefficients associated with 𝑇𝑗(𝑡
′) and 𝑃𝑗(𝑡

′), respectively. 

 

 

 

Fig. 5.2. Triangle and pulse basis functions 

 

Triangle basis function 𝑇𝑗(𝑡
′) is defined over two consecutive source segments. For each 

𝑇𝑗(𝑡
′) the subscript 𝑞 − 1 is used to identify the associated source segment where 𝑇𝑗(𝑡

′) has a 

positive first derivative, while the subscript q identifies the remaining source segment where 
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the derivative is negative. In Eq. (5.24), the division of 𝑇𝑗(𝑡
′) by 𝜌′ avoids numerical 

problems whenever 𝜌′ is close to zero. The pulse function 𝑃𝑗(𝑡
′) is defined over a single 

source segment, which is simply represented by the subscript 𝑗. In Eq. (5.24), the division of 

𝑃𝑗(𝑡
′) by 𝜌𝑗 is used to maintain the same unit for both 𝑡̂- and 𝜙̂-current representations (no 

numerical singularity is introduced by this division since 𝜌𝑗 will never be zero). By applying 

the Fourier series in Eq. (5.24), a sinusoidal behavior is chosen for the azimuthal variation on 

both current elements 𝑇𝑗(𝑡
′) and 𝑃𝑗(𝑡

′), where 𝑛 is an integer number.  

From numerical point of view it is convenient to introduce a parameter τ, defined in the 

interval [-1,1], used to express the source coordinates 𝑡′, 𝜌′  and  𝑧′:   
 

 
𝑡′ = 𝑡𝑙 + 𝜏

∆𝑙
2

 (5.25) 

 
𝜌′ = 𝜌𝑙 + 𝜏

∆𝑙
2
sin 𝑢𝑙 (5.26) 

 
𝑧′ = 𝑧𝑙 + 𝜏

∆𝑙
2
cos 𝑢𝑙 . (5.27) 

 

The triangular basis functions and their derivatives are expressed as: 
 

 

𝑇𝑗(𝑡
′) = {

1 + 𝜏

2
     𝑡′ ∈ segment  𝑞 − 1

1 − 𝜏

2
     𝑡′ ∈ segment  𝑞        

 (5.28.a) 

 

𝑇𝑗′(𝑡
′) =

{
 
 

 
 

1

∆𝑞−1
     𝑡′ ∈ segment  𝑞 − 1

−
1

∆𝑞
     𝑡′ ∈ segment  𝑞        

 (5.28.b) 

 

where ∆𝑞 is the length of the source segment 𝑞. Furthermore, the pulse basis function is 

simply given by 𝑃𝑗(𝑡
′) = 1.  

When selecting the test functions 𝑊⃗⃗⃗⃗𝑖(𝑟) Galerkin's approach is employed. In our case: 
 

 
𝑊⃗⃗⃗⃗𝑖(𝑟) = ∑ [

𝑇𝑖(𝑡)

𝜌
𝑡̂ +

𝑃𝑖(𝑡)

𝜌𝑖
𝜙̂] 𝑒−𝑗𝑚𝜙.

∞

𝑚=−∞

 (5.29) 

 

As two different basis functions [𝑇𝑗(𝑡
′) and 𝑃𝑗(𝑡

′) ] and two different weighting functions 

[𝑇𝑖(𝑡) and 𝑃𝑖(𝑡)] are used, and we are testing the continuity of tangential components of 

bothe the electric and magnetic field, the matrix equation of Eq. (5.21) is written as 
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 [

𝑉𝑇,𝐸

𝑉𝑃,𝐸

𝑉𝑇,𝐻

𝑉𝑇,𝐻

] = [

𝑍𝐸𝐸,𝑇𝑇 𝑍𝐸𝐸,𝑇𝑃 𝑍𝐸𝐻,𝑇𝑇 𝑍𝐸𝐻,𝑇𝑃

𝑍𝐸𝐸,𝑃𝑇

𝑍𝐻𝐸,𝑇𝑇

𝑍𝐻𝐸,𝑃𝑇

𝑍𝐸𝐸,𝑃𝑃

𝑍𝐻𝐸,𝑇𝑃

𝑍𝐻𝐸,𝑃𝑃

𝑍𝐸𝐻,𝑃𝑇

𝑍𝐻𝐻,𝑇𝑇

𝑍𝐻𝐻,𝑃𝑇

𝑍𝐸𝐻,𝑃𝑃

𝑍𝐻𝐻,𝑇𝑃

𝑍𝐻𝐻,𝑃𝑃

] [

𝛼𝑇

𝛼𝑃

𝛽𝑇

𝛽𝑃

], (5.30) 

where from Eqs. (5.22) and (5.29), the elements of the sub-matrices 𝑉𝑇 and 𝑉𝑃 are given by 

(e.g. for the electric field): 

 

𝑉𝑖
𝑇,𝐸 = ∫

𝑇𝑖(𝑡)

𝜌
𝑒−𝑗𝑚𝜙𝑡̂ ∙ 𝐸⃗⃗𝑖𝑛𝑐(𝑟)𝑑𝑠,   𝑖 = 1,… ,𝑁𝑇 ,

𝑆

 (5.31) 

 

𝑉𝑖
𝑃,𝐸 = ∫

𝑃𝑖(𝑡)

𝜌𝑖
𝑒−𝑗𝑚𝜙𝜙̂ ∙ 𝐸⃗⃗𝑖𝑛𝑐(𝑟)𝑑𝑠,   𝑖 = 1, … , 𝑁𝑃,

𝑆

 (5.32) 

and the elements of submatrices of matrix Z (e.g. submatrices related to the E-field: 

𝑍𝑇𝑇,𝐸𝐸 , 𝑍𝑇𝑃,𝐸𝐸 , 𝑍𝑃𝑇,𝐸𝐸 , 𝑍𝑃𝑃,𝐸𝐸 ) are given by: 
 

 

𝑍𝑖𝑗
𝑇𝑇,𝐸𝐸 =

𝑗𝜂

4𝜋𝑘
∫ ∫ {𝑘2

𝑇𝑖(𝑡)

𝜌

𝑇𝑗(𝑡
′)

𝜌′
ej(n𝜙

′−𝑚𝜙)𝑡̂ ∙ 𝑡̂′ − ∇ [
𝑇𝑖(𝑡)

𝜌
e−j𝑚𝜙𝑡̂]

𝑆′𝑆

× ∇′ ∙ [
𝑇𝑗(𝑡

′)

𝜌′
ej𝑛𝜙

′
𝑡̂′]}Ψ 𝑑𝑠𝑆′𝑑𝑆 

(5.33) 

 

 

𝑍𝑖𝑗
𝑇𝑃,𝐸𝐸 =

𝑗𝜂

4𝜋𝑘
∫ ∫ {𝑘2

𝑇𝑖(𝑡)

𝜌

𝑃𝑗(𝑡
′)

𝜌𝑗
ej(n𝜙

′−𝑚𝜙)𝑡̂ ∙ 𝜙̂′ − ∇ [
𝑇𝑖(𝑡)

𝜌
e−j𝑚𝜙𝑡̂]

𝑆′𝑆

× ∇′ ∙ [
𝑃𝑗(𝑡

′)

𝜌𝑗
ej𝑛𝜙

′
𝜙̂′]}Ψ 𝑑𝑆′𝑑𝑆 

(5.34) 

 

 

𝑍𝑖𝑗
𝑃𝑇,𝐸𝐸 =

𝑗𝜂

4𝜋𝑘
∫ ∫ {𝑘2

𝑃𝑖(𝑡)

𝜌𝑖

𝑇𝑗(𝑡
′)

𝜌′
ej(n𝜙

′−𝑚𝜙)𝜙̂ ∙ 𝑡̂′ − ∇ [
𝑃𝑖(𝑡)

𝜌𝑖
e−j𝑚𝜙𝜙̂]

𝑆′𝑆

× ∇′ ∙ [
𝑇𝑗(𝑡

′)

𝜌′
ej𝑛𝜙

′
𝑡̂′]}Ψ 𝑑𝑆′𝑑𝑆, 

(5.35) 

   

 

𝑍𝑖𝑗
𝑃𝑃,𝐸𝐸 =

𝑗𝜂

4𝜋𝑘
∫ ∫ {𝑘2

𝑃𝑖(𝑡)

𝜌𝑖

𝑃𝑗(𝑡
′)

𝜌𝑗
ej(n𝜙

′−𝑚𝜙)𝜙̂ ∙ 𝜙̂′ − ∇ [
𝑃𝑖(𝑡)

𝜌𝑖
e−j𝑚𝜙𝜙̂]

𝑆′𝑆

× ∇′ ∙ [
𝑃𝑗(𝑡

′)

𝜌𝑗
ej𝑛𝜙

′
𝜙̂′]}Ψ 𝑑𝑆′𝑑𝑆 . 

(5.36) 
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The evaluation of the surface integrals (5.33) – (5.36) is accomplished using the following 

change of coordinates and the vector calculus: 
 

 𝑑𝑆 = 𝜌 𝑑𝑡 𝑑𝜙 (5.37) 
 

 𝑡̂ ∙ 𝑡̂′ = sin 𝑢  sin 𝑢′ cos(𝜙 − 𝜙′) + cos 𝑢 cos 𝑢′, (5.38) 

 𝑡̂ ∙ 𝜙′ = sin 𝑢 sin(𝜙 − 𝜙′), (5.39) 

 𝜙̂ ∙ 𝑡̂′ = −sin 𝑢′ sin(𝜙 − 𝜙′), (5.40) 

 𝜙̂ ∙ 𝜙̂′ = cos(𝜙 − 𝜙′), (5.41) 

 ∇ ∙ 𝐹⃗ =
1

𝜌

𝜕

𝜕𝑡
(𝜌𝐹𝑡) +

1

𝜌

𝜕

𝜕𝜙
(𝐹𝜙), 

(5.42) 

 
𝑅 = [(𝜌 − 𝜌′)2 + (𝑧 − 𝑧′)2 + 4𝜌𝜌′sin2 (

𝜙 − 𝜙′

2
)]

1
2

, 
(5.43) 

 
1

𝑅

𝑑Ψ

𝑑𝑅
= −

(1 + 𝑗𝑘𝑅)

𝑅3
𝑒−𝑗𝑘𝑅 (5.44) 

 

Equations (5.33) – (5.36), as well as other elements of the MoM matrix (Eq. (5.30)), can be 

rewritten as 
 

 

𝑍𝑖𝑗
𝑇𝑇,𝐸𝐸 = 𝑗𝜂∫ ∫{𝑘2𝑇𝑖(𝑡)𝑇𝑗(𝑡

′)[sin 𝑢  sin 𝑢′ 𝐺1(𝑡, 𝑡
′)

𝑡′𝑡

+ cos𝑢 cos 𝑢′ 𝐺3(𝑡, 𝑡
′)] − 𝑇𝑖

′(𝑡)𝑇𝑗
′(𝑡′)𝐺3(𝑡, 𝑡

′)} 𝑑𝑡′𝑑𝑡, 
(5.45) 

 

𝑍𝑖𝑗
𝑇𝑃,𝐸𝐸 = 𝜂∫ ∫

𝑃𝑗(𝑡
′)

𝜌𝑗
[𝑘2𝑇𝑖(𝑡)𝜌

′ sin 𝑢 𝐺2(𝑡, 𝑡
′)

𝑡′𝑡

+𝑚 𝑇𝑖
′(𝑡)𝐺3(𝑡, 𝑡

′)] 𝑑𝑡′𝑑𝑡, 

(5.46) 

 

𝑍𝑖𝑗
𝑇𝑇,𝐸𝐻 = 𝑗∫ ∫{𝑘 𝑇𝑖(𝑡) 𝑇𝑗(𝑡

′)[𝜌′ sin 𝑢  cos 𝑢′ − 𝜌 cos 𝑢 sin 𝑢′                     

𝑡′𝑡

+ (z − z′)  sin 𝑢  sin 𝑢′]𝐺5(𝑡, 𝑡
′)} 𝑑𝑡′𝑑𝑡, 

(5.47) 

 

𝑍𝑖𝑗
𝑇𝑃,𝐸𝐻 = −∫ ∫ {𝑘 𝑇𝑖(𝑡)

𝑃𝑗(𝑡
′)

𝜌𝑗
[𝜌′ cos 𝑢 𝐺6(𝑡, 𝑡

′) − 𝜌 cos 𝑢 𝐺4(𝑡, 𝑡
′)

𝑡′𝑡

+ (z − z′)  sin 𝑢  𝐺4(𝑡, 𝑡
′)]} 𝜌′𝑑𝑡′𝑑𝑡, 

(5.48) 
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𝑍𝑖𝑗
𝑃𝑇,𝐸𝐸 = −𝜂∫ ∫

𝑃𝑖(𝑡)

𝜌𝑖
[𝑘2𝑇𝑗(𝑡

′)𝜌 sin 𝑢′ 𝐺2(𝑡, 𝑡
′)

𝑡′𝑡

+𝑚 𝑇𝑗
′(𝑡′)𝐺3(𝑡, 𝑡

′)] 𝑑𝑡′𝑑𝑡, 

(5.49) 

 

𝑍𝑖𝑗
𝑃𝑃,𝐸𝐸 = 𝑗𝜂∫ ∫

𝑃𝑖(𝑡)

𝜌𝑖

𝑃𝑗(𝑡
′)

𝜌𝑗
[𝑘2𝜌𝜌′ sin 𝑢′ 𝐺1(𝑡, 𝑡

′) − 𝑚2 𝐺3(𝑡, 𝑡
′)]

𝑡′𝑡

𝑑𝑡′𝑑𝑡, (5.50) 

 

𝑍𝑖𝑗
𝑃𝑇,𝐸𝐻 = −∫ ∫ {𝑘 

𝑃𝑖(𝑡)

𝜌𝑖
𝑇𝑗(𝑡′)[𝜌 cos 𝑢

′𝐺6(𝑡, 𝑡
′) − 𝜌′cos 𝑢′ 𝐺4(𝑡, 𝑡

′)

𝑡′𝑡

− (z − z′)  sin 𝑢′ 𝐺4(𝑡, 𝑡
′)]} 𝜌 𝑑𝑡′𝑑𝑡, 

(5.51) 

 

𝑍𝑖𝑗
𝑃𝑃,𝐸𝐻 = 𝑗∫ ∫ 𝑘 

𝑃𝑖(𝑡)

𝜌𝑖

𝑃𝑗(𝑡
′)

𝜌𝑗
(𝑧 − 𝑧′) 𝐺5(𝑡, 𝑡

′)

𝑡′𝑡

𝜌𝜌′𝑑𝑡′𝑑𝑡, (5.52) 

 

where the integrals with respect to the 𝜙 are given by 
 

 

𝐺1(𝑡, 𝑡
′) =

1

2
∫ cos𝜙 𝑒−𝑗𝑚𝜙
2𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙 = ∫ cos𝜙 cos𝑚𝜙

𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙, (5.53) 

 

𝐺2(𝑡, 𝑡
′) =

𝑗

2
∫ sin𝜙 𝑒−𝑗𝑚𝜙
2𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙 = ∫ sin𝜙 sin𝑚𝜙

𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙, (5.54) 

 

𝐺3(𝑡, 𝑡
′) =

1

2
∫ 𝑒−𝑗𝑚𝜙
2𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙 = ∫ cos𝑚𝜙

𝜋

0

𝑒−𝑗𝑘0𝑅

𝑘0𝑅
 𝑑𝜙. (5.55) 

 

𝐺4(𝑡, 𝑡
′) =

1

2
∫ cos𝜙 𝑒−𝑗𝑚𝜙
2𝜋

0

 
1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙

= ∫ cos𝜙 cos𝑚𝜙 

𝜋

0

1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙, 

(5.56) 
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𝐺5(𝑡, 𝑡
′) =

𝑗

2
∫ sin𝜙 𝑒−𝑗𝑚𝜙
2𝜋

0

 
1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙

= ∫ sin𝜙 sin𝑚𝜙

𝜋

0

 
1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙, 

(5.57) 

 

𝐺6(𝑡, 𝑡
′) =

1

2
∫ 𝑒−𝑗𝑚𝜙 

2𝜋

0

1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙

= ∫ cos𝑚𝜙 

𝜋

0

1

𝑅

𝑑

𝑑𝑅
(
𝑒−𝑗𝑘0𝑅

𝑘0𝑅
)  𝑑𝜙. 

(5.58) 

 

The other elements of the MoM matrix can be easily found by using the duality principle. 

As it is already mentioned, the metasurface layers are implemented into the BoR code 

through the sheet impedance approach, i.e. by considering the EFIE for a structure with 

metasurface sheets. If we assume that the considered metasurface sheets have electric 

response only, i.e. if we assume that the tangential E-field is continuous at the metasurface, 

then the boundary condition that we will solve using the EFIE-MoM approach is 
 

𝑛̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟) + 𝑛̂ × 𝐸⃗⃗𝑠𝑐𝑎𝑡(𝑟) = 𝑛̂ × (𝑍̿(𝑟) ∙ 𝐽𝑎𝑣(𝑟)),  (5.59) 

 

where 𝐸⃗⃗𝑠𝑐𝑎𝑡 represents the scattered E-field from the metasurface sheet. The modified EFIE 

for a structure with a metasurface sheet in a homogeneous space is given by 
 

𝑛̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟) = 𝑛̂ × (𝑍̿(𝑟) ∙ 𝐽𝑎𝑣(𝑟)) 

+
𝑗

4𝜋𝜔𝜀0
× ∮{𝑘0

2𝐽𝑎𝑣(𝑟
′)Ψ − [∇′𝐽𝑎𝑣(𝑟

′)]∇′Ψ}𝑑𝑆′.

𝑆′

 

(5.60) 

Comparing to “classical” implementation of the MoM the presence of the metasurface sheets 

results in new type of terms: 

∫ 𝑊⃗⃗⃗⃗𝑖(𝑟) ∙ 𝑍̿(𝑟) ∙ 𝐽𝑗(𝑟)𝑑𝑆𝑆
     (5.61) 

 

The value of these integrals is different from zero only in the case when the basis and test 

functions are in the same direction (𝑡̂- or 𝜙̂-directed) and when they share at least part of 

domain where they are defined. For example, in the case of 𝜙̂-directed basis and test 

functions, the result is different from zero only in the case when the basis and test function are 

coincident. The value of additional integral term is equal:  
  

∫ 𝑍𝜙𝜙 (
𝑃𝑖(𝑡)

𝜌𝑖
)

2

𝜌 𝑑𝜌𝑑𝜙 =

𝑆

∫ ∫ 𝑍𝜙𝜙

1

−1

(
∆𝑖

2𝜌𝑖
2) (𝜌𝑖 + 𝜏

∆𝑖
2
sin 𝑢𝑖) 𝑑𝜏𝑑𝜙

2𝜋

0

= 2𝜋𝑍𝜙𝜙 ∆𝑖 𝜌𝑖⁄  
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   (5.62) 
 

In the case of 𝑡̂-directed basis and test functions, they can only be partly coincident (on one 

segment), or they can be fully coincident (on both segments). In the second case, the 

additional integral term is equal:  
 

∫ 𝑍𝑡𝑡 (
𝑇𝑖(𝑡)

𝜌
)

2

𝜌 𝑑𝜌𝑑𝜙

𝑆

 

  

= ∫ ∫ 𝑍𝑡𝑡

1

−1

(1 + 𝜏)2

𝜌𝑖 + 𝜏
∆𝑖
2
sin 𝑢𝑖

(
∆𝑖
2
) 𝑑𝜏𝑑𝜙

2𝜋

0

+∫ ∫ 𝑍𝑡𝑡

1

−1

(1 − 𝜏)2

𝜌𝑖 + 𝜏
∆𝑖
2
sin 𝑢𝑖

(
∆𝑖
2
) 𝑑𝜏𝑑𝜙

2𝜋

0

 

(5.63) 
 

These two integrals can be analytically calculated using the following formulas: 
 

 𝑋 = 𝑎𝑥 + 𝑏 (5.64) 

 ∫
𝑑𝑥

𝑋
=
1

𝑎
ln𝑋 (5.65) 

 ∫
𝑥𝑑𝑥

𝑋
=
𝑥

𝑎
−
b

a2
ln 𝑋 (5.66) 

 ∫
𝑥2𝑑𝑥

𝑋
=
1

𝑎3
(
1

2
𝑋2 − 2𝑏𝑋 + 𝑏2 ln 𝑋). (5.67) 

 

 

 

5.4 Numerical algorithm for calculating Green's functions of 2D multiregion structures 

 

In this section we will describe an algorithm for calculating Green’s functions of 2D 

multiregion structures. The algorithm represents modification of previously developed 

numerical algorithm for calculating the Green's function of 1D multilayer structures of planar, 

circular-cylindrical and spherical type (named the G1DMULT algorithm). Here one-

dimensional (1D) structures denote structures that are homogeneous in two dimensions and 

they vary in one dimension only. Similarly, two-dimensional (2D) structures denote structures 

that are homogeneous in one dimensions and they vary in two dimensions (we are in 

particular interested in BoR type of 2D structures). 

In order to understand the newly developed algorithm, first we will describe the previously 

developed G1DMULT algorithm (see Fig.5.3). The algorithm starts with a 3D problem 

including some excitation currents  (e.g.  a  chosen current distribution on  a  microstrip patch 

DISTRIBUTION A:  Distribution approved for public release



Analysis and Design of Curved Metamaterial Structures   61 

  
 

Fig. 5.3. Illustration of how a 3D problem with 1D boundary conditions of planar (left), 

circular cylindrical (middle) and spherical (right) type can be solved in the spectral domain 

by Fourier transformation of the 3D excitation currents. The spectral domain problem is 

illustrated in space in (b), showing the spectral excitation currents as current sheets, tubes 

and shells. The homogenous region Green’s function used to solve the multilayer spectral 

problem is the field due to a current sheet, tube or shell in a homogenous region [see (c)]. 
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element) and a multilayer structure (one of the three mentioned types), see Figure 5.3.a. Then 

we transform the currents in the two dimensions (using suitable variation of the two-

dimensional Fourier transformation) where the structure is invariant. Doing this, the current 

excitation can be interpreted in space as a current sheet, tube or shell around the multilayer 

structure (Fig. 5.3.b). The theoretical background of the algorithm is the Love's equivalence 

theorem [35]. The spatial harmonic problem is subdivided into one equivalent problem per 

layer (Figs 5.3.c and 5.3.d) where the field in each region is formulated as the field radiated 

by equivalent currents at the layer boundaries. For example, the E-field in the layer j is 

expressed as 
 

𝐸⃗⃗̃𝑗 = 𝐆EJ
homo𝐽𝑗−1

eq
+ 𝐆EJ

homo𝐽𝑗
eq
+ 𝐆EM

homo𝑀⃗⃗⃗̃𝑗−1
eq

+ 𝐆EM
homo𝑀⃗⃗⃗̃𝑗

eq
+ 𝐆EJ

homo𝐽𝑗
exci + 𝐆EM

homo𝑀⃗⃗⃗̃𝑗
exci 

 (5.68) 
 

where 𝐽𝑗
eq

 and 𝑀⃗⃗⃗̃𝑗
eq

 are equivalent electric and magnetic current sheets at boundary j,  𝐽𝑗
exci 

and 𝑀⃗⃗⃗̃𝑗
exci are excitation electric and magnetic currents in layer j (if any), and 𝐆EJ

homo and 

𝐆EM
homo are the Green's functions of the homogeneous structure. By using                           

𝐽𝑗
eq
= ±𝑛̂ × 𝐻⃗⃗⃗̃𝑗     and   𝑀⃗⃗⃗̃𝑗

eq
= ∓𝑛̂ × 𝐸⃗⃗̃𝑗    Eq. (5.68) can be expressed in terms of the unknown 

tangential EM field components  𝐸⃗⃗𝑗  and  𝐻⃗⃗⃗𝑗  at the boundary j between layers j and j+1 and 

known excitation currents. The boundary conditions that the tangential E- and H- fields are 

continuous at the layer boundaries give 4 linear equations per boundary. The tangential E- and 

H-fields are evaluated by solving the system of 4 ∙ 𝑁𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  equations with 4 ∙ 𝑁𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

unknowns, where 𝑁𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦is the number of boundaries present in the multilayer structure. 

After they have been determined, the total E- and H-fields at any desired location can be 

found by using the equivalent problem in Fig 5.3.d. Note that the calculated EM field values 

are in the spectral domain, thus the 3D field solution is obtained by a 2D inverse Fourier 

transform of the spectral solutions. Note also that the multilayer solution process is the same 

for all three types of geometry; it can handle any number of layers of materials with complex 

permittivity and permeability. More details about the G1DMULT algorithm can be found in 

[30] and [31]. 

The BoR structures belong to the 2D class of structures, i.e. they are homogeneous only in 

𝜙̂-direction. Therefore, we need perform a 1D Fourier transformation (for BoR structures we 

have to perform the Fourier series in 𝜙̂-direction), and by this we arrive into a spectral domain 

problem which is two-dimensional (2D) in space coordinates. Such spectral domains are used 

to analyze antennas on multiregion 2D structures which are rotationally symmetric (i.e. BoR 

structures), or which are infinitely long in the axial direction. The incremental sources in this 

spectral domain can be interpreted in space as ring currents with harmonic variation or line 

currents with harmonic variation, see Figure 5.4. Consequently, the Green’s function is the 

field due to a single ring (or line) current.  

 

We have developed a numerical algorithm called G2DMULT for calculating the Green’s 

function of multiregion 2D structures with rotational symmetry (i.e. of multilayer BoR 

structures) by using the Method of Moments. The algorithm makes use of the above 

homogenous region Green’s functions in the spectral domain in the core subroutines. A 

typical analysis procedure in terms of G2DMULT is illustrated in Figs. 5.4 and 5.5. We start 

with a 3D problem including some excitation currents (e.g. a chosen current distribution on a 

conformal patch element) and a multiregion 2D structure with rotational symmetry, see Fig. 
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5.4.a. We Fourier transform the currents in the dimensions where the structure is invariant. 

Doing this, the current excitation can be interpreted in space as a ring current with harmonic 

variation on the multilayer structure. Then, G2DMULT can be used to calculate the field 

solution of the multiregion structure in this spectral domain. The homogenous region Green’s 

functions used to construct this field solution is the field of a line or ring current (Fig. 5.4.c). 

The 3D field solution is obtained by a 1D inverse Fourier transform of the spectral solutions. 

 

 

 

 
 

Fig. 5.4. Illustration of how a 3D problem with 2D boundary conditions or rotationally 

symmetric (left) and cylindrical (right) type can be solved in the spectral domain by Fourier 

transformation of the 3D excitation currents. The spectral domain problem is illustrated in 

space in (b), showing the spectral excitation currents as line and ring currents. The 

homogenous region Green’s function used to solve the multiregion spectral problem is the 

field due to a ring or line current in a homogenous region [see (c)]. 
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Fig. 5.5. Flowchart of the subroutine G2DMULT. 

 

 

Fig. 5.5 shows the flow chart of the routine G2DMULT. The program consists of three 

loops inside each other. The first loop is taken over all layer boundaries, referred to as the 

boundary condition loop, in order to generate the 4 sets of equations per each boundary. The 

second loop is referred to as the adjacent region loop; it takes into account that each boundary 
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is surrounded by two regions. The tangential E- and H-fields components at each boundary 

are given by a sum of contributions from the equivalent currents from two boundaries of both 

adjacent regions. Therefore, the inner third loop goes over the lower and upper boundary of 

the considered adjacent region below or above the boundary for which the tangential E- and 

H-fields components are calculated. This third loop is referred to as the region boundary loop. 

The tangential E- and H-fields are calculated by using the two core subroutines G2DJ and 

G2DM.  At the end of G2DMULT algorithm the MoM linear system of equations is solved by 

using LU decomposition, and then the output E- and H-fields are evaluated at the desired 

locations. 

The basis of the G2DMULT algorithm can be found in [31] and the details about the 

cylindrical version can be found in [47]. It should be noted that the BoR version of the 

G2DMULT algorithm has not been developed so far. 

 

 

5.5 Numerical results 
 

We have tested the accuracy of the developed BoR program on several canonical cases. As 

an illustration first we have calculated the current distribution induced on a PEC cylindrical 

rod with hemispherical caps at the ends. The rod has 0.4 λ0 diameter and is 1.5 λ0 long, and 

the excitation is axially-polarized plane wave with normal incidence. The sketch of the 

structure and the calculated current distribution is given in Fig. 5.6. It can be seen that the 

calculated current distribution complies perfectly with calculation in [38]. Note that the θ-

component current distribution has oscillations due to reflection from the end of the rod and 

has a period of 1/2 λ0 (as expected). 

 

 

 
 

Fig. 5.6. Calculated current distribution induced on a PEC cylindrical rod; full line – results 

calculated with G2DMULT-BoR code, dotted line – results from [38].   

 

As a next example let us compare the codes for 1D and 2D-BoR structures; the body that is 

common in both structure classes is a sphere. Therefore, let us consider a problem of 

scattering of EM waves from an impedance sphere (already discussed in the section 3.8). The 

assumed radius of the sphere is kr1 = 5, and the selected value of surface impedance is            

Z = j·0.15 η0. The spherical impedance surface is described with the transparent surface 
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impedance boundary conditions. The comparison of calculated bistatic scattering cross 

section using the BoR and spherical ABCD matrix programs is given in Fig. 5.7. It can be 

seen that there is perfect agreement between two sets of calculated results.  

 

 

 

 

 

 

Fig. 5.7. Comparison of calculated bistatic scattering cross sections using the G2DMULT-

BoR program (solid line) and the spherical ABCD matrix program (diamonds). 

 

 

 
 

Fig. 5.8. Comparison of calculated bistatic scattering cross section using the G2DMULT-BoR 

program (solid line) and the spherical ABCD matrix program (diamonds). 

 

To further test the BoR code, i.e. to test the part of the code that combines equivalent sub-

problems of a multiregion structure into a global electromagnetic problem, we added 

additional metasurface layer to previously described spherical structure in order to reduce the 

back-scattered field. We selected the value of surface impedance of the outer layer to be         

Z = j·η0,  and by simple optimization procedure we determined the radius of the outer layer 

that gives negligible back-scattered field: kr2 = 7.6. The comparison of calculated bistatic 
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scattering cross section using the BoR and spherical ABCD matrix programs is given in Fig. 

5.8. It can be seen that again there is perfect agreement between two sets of calculated results. 

As the final example let us consider the two-layer cylindrical metasurface structure 

described in the subsection 3.7 Influence of mutual coupling between metasurface layers, see 

Fig. 3.11 and Fig. 5.9. The outer radius of the structure (ρ2 = 114.6 mm) was fixed and the 

inner radius was selected to be 99.6 mm and 107.1 mm, respectively. For the BoR program 

the length of cylinder was selected to be 1125 mm. The working frequency was set to  f = 4.0 

GHz and the excitation to a TMz normally incident plane wave. The values of the surface 

sheet impedance were calculated using the MoM code for cylindrical structures [26], and the 

calculated values depend on the used spectral-domain component (i.e. on the Fourier 

harmonic) of the impinging field. In Fig. 5.9, the calculated scattering pattern is plotted. The 

bistatic radar cross section σ3D and the bistatic scattering width σ2D are connected using the 

approximate formula for long cylindrical structures [48]: 

𝜎3𝐷 ≈ 𝜎2𝐷
2𝐿2

𝜆0
 (5.69) 

where L is the length of the structure (15 wavelengths in the considered case). There is 

excellent agreement between the two methods, the ABCD transmission matrix approach and 

the BoR code, despite the fact that the BoR program analyzes three-dimensional structures 

while the ABCD transmission matrix program analyzes two-dimensional structures. 

 

 

 

(a) 
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(b) 

 

(c) 

Fig. 5.9. Scattering pattern of two-layer cylindrical metasurface; (a) sketch of the analyzed 

structure, distance between two metasurface layers is: (b) 0.2 λ, and (c) 0.1 λ. 
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Measured results 
 

  

 

In this chapter we will present design and measurements of several prototypes of curved 

metasurface structures. The common goal behind all considered prototypes is to reshape the 

radiation pattern of the feed antenna and by this to act as a metasurface lens. The considered 

metasurfaces work in transmitting mode, i.e. the radiation pattern is formed by transmitting 

the EM waves, originating from the feed antenna, through the curved metasurface.   

 

6.1 Single-layer cylindrical metasurface   
 

The first prototype consists of a single-layer cylindrical metasurface printed on a thin 

substrate. The metasurface substrate is curved then to cylindrical shape of desired radius       

(6 cm). Only the half of considered cylidrical surface is covered with the metasurface. If the 

feed antenna has an omnidirectional radiation pattern, such as a monopole or a dipole, the 

reshaped pattern should have two maximums at ±45° and the broadside radiated pattern 

should be reduced for approximately 10 dB comparing to the maximum at ±45°. If the feed 

antenna is more directive (like a waveguide opening or a horn) the modified radiation pattern 

will have a broader main beam, i.e. the beamwidth will be enlarged. 

 
 

 

Fig. 6.1. Surface impedance profile for the cylindrical metasurface 
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The required impedance profile for a half-cylinder is given in Fig. 6.1. In this single-layer 

design the impedance profile is fully inductive throughout the surface and it can be simply 

realized using printed metallization based on printed straight and meander lines, see Fig 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

(a) 

 

   

(b)       (c) 

Fig. 6.2. Realization of the single-layer printed metasurface; (a) Layout of the metallization, 

(b) image of the cylindrical metasurface mounted on a dielectric support, (c) measurement 

setup. 

 

The design of the structure is based on modulating the surface impedance to comply with 

the required impedance profile using inductive impedance lines as shown in Fig. 6.2.a. Using 

a standard PCB technology this profile is printed on a flexible substrate (εr = 2.55, h = 0.13 

mm) and curved to shape a half-cylinder with a radius of 60 mm. All the geometry details are 

given in the Table 6.1 below and the photos of the structure mounted on a support dielectric 

cylinder and the measurement setup are shown in Figs. 6.2.b and 6.2.c.  
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TABLE 6.1  DETAILS OF THE DESIGN OF SINGLE-LAYER CYLINDRICAL METUSURFACE STRUCTURE 

CONTAINING 24 SEGMENTS: THE STRAIGHT STRIPLINES HAVE VARIABLE LINE WIDTH AND THE 

MEANDER LINES HAVE FIXED LINE WIDTH AND VARIABLE TOTAL WIDTH. THE RADIUS OF THE 

CYLINDRICAL METASURFACE STRUICTURE IS 60 MM AND THE CENTRAL WORKING FREQUENCY IS 

10 GHZ. DUE TO SYMMETRY ONLY ¼ OF THE STRUCTURE IS DESCRIBED 

 

Segment No. Type of the 

metasurface 

structure 

Width of the 

stripline 

Total width 

of the 

meander line 

Calculated 

surface sheet 

impedance 

(spectral-

domain 

approach) 

Calculated 

surface sheet 

impedance 

(CST 

Microwave 

Studio) 

1 stripline w = 1.3 mm - j·126.16 Ω j·129.99 Ω 

2 stripline w = 0.5 mm - j·223.66 Ω j·215.33 Ω 

3 meanderline w = 0.5 mm h = 3.5 mm j·392.53 Ω j·398.53 Ω 

4 meanderline w = 0.5 mm h = 5.15 mm j·587.52 Ω j·590.92 Ω 

5 meanderline w = 0.5 mm h = 6.1 mm j·756.39 Ω j·756.71 Ω 

6 meanderline w = 0.5 mm h = 6.5 mm j·853.89 Ω j·858.34 Ω 

 

It can be seen that the required surface sheet impedance can be realized using the “classical” 

single-line straight strips (lower values of surface reactance) and meander lines that fit into 

the selected segment representing one metasurface cell (higher values of surface reactance; 

the selected width of each segment was 7.85 mm). The desired value of the surface reactance 

was obtained by changing the width of the stripline and the total width of the meander line 

structure (see Appendix 1 where we will discuss typical values of surface impedance that can 

be achieved with different metasurface patterns). 

In the following part of the section the properties of this design will be investigated 

through measurements and simulations, confirming the validity of the design and the 

modeling approach. For the measurements, different excitation feeds were used and the setup 

was mounted in our laboratory with mobile anechoic walls. 

 

6.1.1. Monopole feed - curved metasurface printed on a thin substrate with no support 

layer 
 

We start the presentation of the results related to this test structure by showing the pattern 

which the designed metasurface produces when excited by a simple monopole feed. The 

metasurface itself is printed on a very thin dielectric substrate which can be easily 

manipulated and curved to exactly form a cylinder with 60 mm radius. The measured 

radiation pattern in polar coordinates for the monopole itself mounted on our rotational stage 

enclosed by anechoic walls is shown in Fig. 6.3.a. These results verified the expected 

omnidirectional pattern and ensured us that there are no spurious reflections that could affect 

the results when the metasurface was added. The measured pattern with the metasurface for 

the frequency range of interest is shown in Fig. 6.3.b. The varying surface impedance of the 

metasurface produces amplitude and phase modulation which in effect reshape the radiation 

pattern as desired.  
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      (a)                (b) 

Fig. 6.3. Measured radiation patterns for; (a) monopole feed, (b) monopole feed with single 

layer metasurface. 
 

A more detailed look at the measured results at 10 GHz is shown in Fig. 6.4.a with a direct 

comparison of the pattern with and without the metasurface showing the potential of this “a 

posteriori” control of the pattern. Note that the measured pattern of the metasurface structure 

is normalized with the measured gain of monopole feeding antenna. 

The measured results are further compared with the results of the developed spectral-

domain analysis method and the results obtained with CST Microwave Studio [37] used as 

commercial reference tool. Note that the spectral-domain method uses the surface sheet 

impedance approach, while the CST Microwave Studio results are calculated by considering 

the developed metasurface geometry with all details (i.e. without the intermediate step of 

using the surface sheet impedance). Consequently, the needed computer time is several orders 

of magnitude larger when using the commercial software package. Both analysis tools predict 

well the main lobes although there is a few degrees shift probably due to small prototype 

manufacturing or alignment offset. In the null of the pattern both methods deviate from the 

measurements, but still recreate the main shape. 

  

(a)       (b) 

Fig .6.4. Radiation pattern for the designed metasurface; (a) measured patterns without and 

with the metasurface, (b) comparison between measurements, developed spectral-domain 

method results and CST MS results. 
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These results are shown in more details in Fig. 6.5 where one-to-one comparison of both 

methods with the measurements is shown. Spectral-domain method as seen agrees very well 

with the measured results in the front segment, however it doesn’t recreate the backward 

radiation so well. This is due to complicate reflection mechanism within a cylindrical 

metasurface concave reflector. Direct comparison of the measurements with CST MS results 

also reveals similar problems with the inaccurate prediction of backward radiation, but it also 

shows that the results for the forward direction have a more significant reduction in the 

radiation pattern in broadside direction compared to developed spectral-domain method. 

  

  

(a)       (b) 

   

(c)       (d) 

Fig. 6.5. Radiation patterns for the designed metasurface; (a) comparison of measured results 

and developed SD method for forward direction, (b) comparison of measured results and 

developed SD method for the entire angular range, (c) comparison of measured results and 

CST MS results for forward direction, (d) comparison of measured results and CST MS 

results for the entire angular range. 

 

Finally, the frequency dependence for all three sets of results (measurements, spectral-

domain, CST MS) is shown in Fig. 6.6. It shows that the pattern in the forward direction is 

reasonably stable, but in the backward direction it significantly varies with frequency due to 

reflections from the front metasurface sheet (the angular area occupied with the metasurface 

sheet is 180°). 
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(a) 

 

(b) 

 

(c) 

Fig .6.6. Frequency dependence of radiation pattern; (a) measurements, (b) spectral-domain 

approach, (c) CST Microwave Studio. 
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6.1.2. Monopole feed - curved metasurface is printed on a thick substrate support layer  
 

The second set of results for this design of the metasurface investigates how an additional 

dielectric support layer with parameters εr = 2.6, h = 3.0 mm will affect the radiation 

properties of the metasurface. As in the first case, we start by observing the radiation patterns 

in polar coordinate system (Fig.6.7) of the monopole itself without a supporting dielectric 

structure and with the metasurface around it for different frequencies and expand on these 

results to gain more insight into the details at the operating frequency of 10 GHz. 

 

       
        (a)                        (b) 

Fig. 6.7. Measured radiation patterns for; (a) monopole feed, (b) monopole feed with single- 

layer metasurface and supporting dielectric layer. 

 

Compared to previous set of results the radiation pattern has more pronounced minor lobes 

(Fig. 6.8.) in the forward direction, but the main lobes remained at 45 degrees. Both analysis 

methods predict well the positions of the peaks with only minor deviations which become 

more pronounced as we move towards the backward radiation. Also, from direct comparisons 

with measurements (Fig. 6.9.) we see that the spectral-domain method predicts the amplitude 

levels more precisely than CST MS.  

As expected, this case due to thicker dielectric with higher permittivity introduces more 

pronounced resonances in the pattern due to reflections inside the metasurface cylinder, but 

although the amplitudes of these are not well predicted, the positions are quite accurately 

estimated with the spectral-domain method. This shows that the developed approach is robust 

enough to handle quite complex metasurface structures.  
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(a)       (b) 

Fig. 6.8.  Radiation pattern for the designed metasurface with dielectric supporting structure; 

(a) measured patterns without and with the metasurface, (b) comparison between 

measurements, developed spectral-domain method results and CST MS results. 

    

(a)       (b) 

    

(c)       (d) 

Fig. 6.9. Radiation patterns for the designed metasurface with dielectric support; (a) 

comparison of measured results and developed SD method for forward direction, (b) 

comparison of measured results and developed SD method for the entire angular range, (c) 

comparison of measured results and CST MS results for forward direction, (d) comparison of 

measured results and CST MS results for the entire angular range. 
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6.1.3. Waveguide feed - curved metasurface printed on a thin substrate  with no support 

layer  

 

        

            (a)       (b) 

Fig. 6.10. Used waveguide feed and its radiation pattern; (a) photo of the WR-90 feed, (b) 

comparison of measured, SD method and CST MS computed radiation patterns. 

 

The same metasurface structure (without the thick dielectric support layer) is excited in 

this case with WR-90 waveguide to verify the developed method for a more complex feed 

situation. The waveguide and its radiation pattern in free space are shown in Fig.6.10. While 

measurements and CST MS results agree very well, the spectral domain method cannot 

accurately predict the backward radiation from the realistic feed. This is due to simple feed 

model of an open waveguide – we simply applied the Love equivalence principle to the EM 

field distribution at the waveguide opening. This however is not a critical issue from the 

modeling perspective since the effect of this backward radiation will be negligible compared 

to metasurface reflection as it will be shown. 

 

   

(a)       (b) 

Fig. 6.11. Measured radiation patterns for; (a) WR-90 waveguide feed, (b) WR-90 waveguide 

feed with single layer metasurface. 
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Measured results in Fig. 6.11. show the frequency dependence for the waveguide radiation 

without and with the metasurface. This is visualized more closely in Fig. 6.12 separately for 

forward radiation and the full 360 deg. The metasurface effect produces again the splitting of 

the main beam for +/- 45deg directions. Unlike the monopole case, there is a strong reflection 

in the backward direction which is a consequence of the fact that a single layer metasurface 

cannot be designed to reshape the radiation pattern with zero reflections. 

 

   

(a)       (b) 

Fig. 6.12. Comparison between measured radiation patterns for waveguide feed without and 

with the metasurface; (a) only forward direction, (b) full angular pattern. 

 

The developed SD method shows results which agree very well with the measurements as 

seen in Fig. 6.13. The agreement is not perfect in the backward direction (for the reflection 

from the metasurface), but also CST MS results fail to accurately predict this part of the 

pattern (as seen in Fig. 6.13.d). 

The analysis of the frequency dependence in Fig. 6.14. reveals that the pattern is very stable 

in the forward direction. In the backward direction the reflection part is naturally also 

unchanged, but other segments change quite significantly with frequency.  

 

   

(a)       (b) 
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(c)       (d) 

Fig. 6.13. Radiation patterns for the designed metasurface with waveguide feed; (a) 

comparison of measured results and developed SD method for forward direction, (b) 

comparison of measured results and developed SD method for the entire angular range, (c) 

comparison of measured results and CST MS results for forward direction, (d) comparison of 

measured results and CST MS results for the entire angular range. 

 

 

(a)       (b) 

 

Fig .6.14. Frequency dependence of radiation pattern; (a) measurements, (b) spectral domain 

approach, (c) CST Microwave Studio. 

(c) 
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6.2 Two-layer cylindrical metasurface   
 

As indicated before, a multilayer metasurface structure allows gives us more degrees of 

freedom when aiming to manipulate radiation pattern or similar wave properties. This will be 

demonstrated with a prototype designed for 10 GHz which consists of two identical 

metasurface layers. The design goal was to enhance the gain of the feed antenna and at the 

same time reduce the backscattering from the metasurface structure which was not possible 

with single-layer design. 

The impedance profile and the metallization pattern needed for realization are show in Fig 

6.15. Using a standard PCB technology this profile is printed on both sides of a flexible 

substrate and curved to shape a half-cylinder with a radius of 90 mm. The used substrate is 

IsoClad 933 laminate from Rogers Corporation with permittivity εr = 2.33 and thickness h = 

1.55 mm. One of the predicted applications of this substrate is realization of conformal 

antennas, thus the substrate is highly flexible (the flexural modulus is 239 kpsi which is one 

order of magnitude lower value than for usual microwave substrates), and it was possible to 

bend it to form a cylinder of radius 90 mm as shown in Fig. 6.16. All the geometry details are 

given in the Table 6.2 below and the photos of the structure mounted on a support dielectric 

cylinder and the measurement setup are shown in Figs. 6.16. 

 

 

 

(a) 
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(b) 

Fig. 6.15.  Surface impedance profile for the cylindrical metasurface (used in two-layer case); 

(a) impedance values, (b) metallization profile. 

 

 

Fig. 6.16.  Image of a cylindrical metasurface with a monopole feed antenna. 
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TABLE 6.2  DETAILS OF THE DESIGN OF TWO-LAYER CYLINDRICAL METUSURFACE STRUCTURE 

THE RADIUS OF THE CYLINDRICAL METASURFACE STRUICTURE IS 90 MM AND THE CENTRAL 

WORKING FREQUENCY IS 10 GHZ. DUE TO SYMMETRY ONLY ¼ OF THE STRUCTURE IS DESCRIBED 

 

Segment No. Type of the 

metasurface 

structure 

Angular 

position  

Width of 

the stripline  

Total width 

of the 

meander line 

Calculated 

surface sheet 

impedance  

1 meanderline 2.5° 0.5 mm 6.6 mm j·854.41  

2 meanderline 7.5° 0.5 mm 6.4 mm j·819.51  

3 meanderline 12.5° 0.5 mm 6.05 mm j·753.92  

4 meanderline 17.5° 0.5 mm 5.56 mm j·665.54  

5 meanderline 22.5° 0.5 mm 4.85 mm j·565.05  

6 meanderline 27.5° 0.5 mm 4.15 mm j·464.56  

7 meanderline 32.5° 0.5 mm 3.3 mm j·376.18  

8 meanderline 37.5° 0.5 mm 2.5 mm j·310.59  

9 meanderline 42.5° 0.5 mm 1.83 mm j·275.69  

 

6.2.1. Waveguide feed - curved two-layer metasurface  
 

Realized two-layer metasurface is illuminated by a waveguide feed WR-90 (shown in Fig. 

6.10.a) and produces radiation patterns as shown in Fig. 6.17. From comparison with a 

standalone waveguide feed we see the focusing effect which was obtained by using this 

metasurface. The patterns are directly compared in Fig. 6.18. for the design frequency (10 

GHz) and the gain improvement is clearly seen (note that the patterns are normalized with the 

gain of waveguide opening feeding antenna). Also, compared to the previous single-layer case 

there is no pronounced reflection in the backward direction from the metasurface. 

 

  

(a)        (b) 

Fig. 6.17. Measured radiation patterns for; (a) WR-90 waveguide feed, (b) WR-90 waveguide 

feed with two-layer metasurface. 
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(a)       (b) 

Fig. 6.18. Comparison between measured radiation patterns at 10 GHz for waveguide feed 

without and with the two-layer metasurface; (a) only forward direction, (b) full angular 

pattern. 

  

(a)       (b) 

  

(c)       (d) 

Fig. 6.19. Radiation patterns for the designed two-layer metasurface with waveguide feed; (a) 

comparison of measured results and developed SD method for forward direction, (b) 

comparison of measured results and developed SD method for the entire angular range, (c) 

comparison of measured results and CST MS results for forward direction, (d) comparison of 

measured results and CST MS results for the entire angular range. 
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The developed SD method shows results which accurately predict the main lobe, but fail in 

the backward direction as seen in Fig. 6.19.ab. CST MS results (Fig. 6.19.cd) give a better 

prediction in this case. This comparison indicates to a potential problem with measurement 

setup since there is no symmetry in the backward radiation direction.  

The analysis of the frequency dependence in Fig. 6.20. reveals that the measurement 

pattern is stable in the forward direction, but the backward direction changes significantly 

with frequency. This is not the case in the numerically obtained results which show much 

smaller variations which again indicates a certain alignment problem which in spite several 

attempts was not successfully resolved in this measurement campaign.  

 

   

(a)       (b) 

 

 

(c) 

Fig. 6.20. Frequency dependence of radiation pattern; (a) measurements, (b) spectral domain 

approach, (c) CST Microwave Studio. 
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6.2.2. Rectangular horn feed - curved two-layer metasurface  
 

Influence of the metasurface layer is investigated also using a rectangular horn feed 

antenna. The antenna and its radiation pattern are shown in Figs. 6.21 and 6.22, and as before 

the metasurface should enhance the gain of this horn antenna and at the same time have 

reduced backscattering compared to a single layer metasurface case. 

 

 

 
 

Fig. 6.21. Rectangular horn feed antenna. 

 

 

 

     (a)                              (b) 

Fig. 6.22. Measured radiation patterns for; (a) rectangular horn feed antenna, (b) 

rectangular horn feed antenna with two-layer metasurface. 
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(a)       (b) 

Fig. 6.23. Comparison between measured radiation patterns at 10 GHz for horn antenna 

without and with the two-layer metasurface; (a) only forward direction, (b) full angular 

pattern. 

 

As expected, the results in Figs. 6.22. and 6.23. show the gain improvement achieved using 

the metasurface layer (note that the patterns are normalized with the gain of rectangular horn 

feed antenna). 

The developed SD method again shows results (Fig. 6.24.ab) which accurately predict the 

main lobe, but the level of the field in the backward direction has a considerable error. CST 

MS results (Fig. 6.24.cd) are better in this case, and quite accurately predict the backward 

radiation.  

Frequency results in Fig. 6.25 show much more stable results for the measured case with 

respect to the waveguide opening. This confirms a possible problem with the alignment of the 

waveguide feed in the previous case. Still however, the spectral domain method results show 

too high field level in the backward direction, whereas CST MS gives reasonable prediction 

for all frequencies. 

 

  

(a)       (b) 
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(c)       (d) 

Fig. 6.24. Radiation patterns for the designed two-layer metasurface with waveguide feed; (a) 

comparison of measured results and developed SD method for forward direction, (b) 

comparison of measured results and developed SD method for the entire angular range, (c) 

comparison of measured results and CST MS results for forward direction, (d) comparison of 

measured results and CST MS results for the entire angular range. 

 

  

(a)       (b) 

 

Fig. 6.25. Frequency dependence of radiation pattern; (a) measurements, (b) spectral domain 

approach, (c) CST Microwave Studio. 

(c) 
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6.3 Production of curved metasurfaces structures 
 

In principal, there are two problems with design and implementation of curved 

metasurfaces (in comparison to planar structures): analysis methods are more complicated and 

the production techniques are much more complex.   

The production of single-curved structures (i.e. structures with one principal direction of 

curvature) is of the same order of complexity like production of planar counterparts - it is still 

possible to use standard printed circuit board (PCB) technology. However, there are several 

practical details to be considered. In the process of bending a planar substrate, the length of 

outer surface is larger than the length of inner surface. Therefore, the dimensions of the 

metasurface elements will be enlarged at the outer surface. This extension of the dimensions 

should be taken into account when designing the metasurface elements. Next, when designing 

structures with more than two metasurface layers, it is important to adhesively bond layers 

together without introducing airpockets, gaps and cracks between the layers. Therefore, in this 

process it is helpful and important to have a rigid frame (i.e. mold) to successfully bend and 

glue layers that form a multilayer structure. Finally, it is important to choose a substrate 

suitable for bending, i.e. to select a microwave substrate with a low value of flexural modulus. 

In mechanics, the flexural modulus or bending modulus is an intensive property that is 

computed as the ratio of stress to strain in flexural deformation, or the tendency for a material 

to resist bending. Ideally, flexural or bending modulus of elasticity is equivalent to the tensile 

modulus (Young's modulus). Another parameter of interest is the tensile strength of a material 

defined as the maximum amount of tensile stress that the material can take before failure, for 

example breaking. In the Table the values of flexural modulus and tensile strength are given 

for a “classical” FR4 substrate and for two substrates suitable for building conformal antennas 

and metasurfaces. 

 

TABLE 6.3 MECHANICAL PROPERTIES OF DIFFERENT MICROWAVE SUBSTRATES 

Name Producer 
 

Permittivity 

(at 10.0 GHz) 

 

Flexural 

modulus  
 

 

Tensile 

strength 
 

FR4 Isola 3.65 
 

3190 kpsi 

(22.0 GPa) 
 

 

46.4 kpsi 

(320 MPa) 

IsoClad 933 Rogers 

corporation 

2.33 
 

239 kpsi 

(1.65 GPa) 

 

5.3 kpsi 

(36.6 Mpa) 

FLX1100 Premix 11.0 
 

275 kpsi 

(1.9 GPa) 

 

2.03 kpsi 

(14.0 Mpa) 
 

 

Double-curved metasurface structures are much harder to produce. It is not possible just to 

bend the substrate material since now we have two principal orthogonal directions of 

curvature. One possibility is to produce the dielectric supporting structure using 3D printing 

technology. In the last decade we faced a strong development of this production technology 

with a variety of applications. The accuracy of production facilities depends on the quality of 

the 3D printer, and the tolerances of the printed prototype can be less than 0.02 mm, which 

fulfils requirements for most of metasurface applications. Note that nowadays it is possible to 

buy “electromagnetic” filaments for 3D printing with a large range of permittivity and low 
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losses at microwave frequencies. For example, the Preperm company offers filaments for 3D 

printing with permittivity tailored between 3 and 10, and with typical dissipation factor 0.004.  

While it is relatively simple to produce the dielectric supporting structure, the metallization 

process is much more complex. We have investigated several possibilities of performing 

metallization: using sprays with conductive paint, using electroless copper plating process or 

using sputtering technology. The first possibility is the simplest one – one needs just to make 

a mold or pattern for spraying and to spray the dielectric supporting structure with conductive 

paint. However, there are two serious drawbacks: the pattern should tightly fit to the dielectric 

structure (otherwise, the effect of widening the metal areas, patches and lines, will occur), 

which is not so easy to obtain for double-curved structures. The other drawback is more 

serious – such paints have limited conductivity and therefore the losses in metasurface 

structure are increased. Table 6.4 gives a comparison of conductivity of three commercial 

products. It can be seen that two of them have several orders of magnitude worse conductivity 

comparing to the copper made structures (the conductivity of copper at room temperature is 

5.96×10
7
 S/m). 

 

TABLE 6.4 CONDUCTIVITY PROPERTIES OF DIFFERENT METALIZED PAINTS 

 

Name of the product 

 

Producer 

 

Surface Resistivity 

 

Estimated 

conductivity 
 

 

Silver Plated 

Copper Compound  

RS 247-4251 
 

 

RS PRO 

 

0.3 - 0.7 Ω/sq.  

@ 50 microns 

 

2.9·10
4
 - 6.7·10

4
 S/m 

 

NSCP Nickel 

Screening 

Compound – Plus 
 

 

Electrolube 

 

0.3 - 0.7 Ω/sq.  

@ 50 microns 

 

2.9·10
4
 - 6.7·10

4
 S/m 

 

Conductive silver 

coating 3830 
 

 

Hollandshielding 

 

< 0.015 Ω/sq.  

@ 25 microns 

 

> 2.7·10
6
 S/m 

 

In order to test the production process based on spraying the metalized paint we have 

repeated production of the single-layer metasurface described in section 6.1, but this time 

using this production technology. First we have produced the pattern for spraying. The pattern 

itself was made from a solid thin cardboard, and for precise cutting we have used laser CNC 

machine. Two prototypes of the pattern for spraying are shown in Fig. 6.26. It can be seen 

that the first prototype had problems with internal forces which laterally “moved” the walls 

between holes for meander line, but in the second prototype we have managed to solve this 

problem.   

In the next step of production we sprayed the metasurface structure. As a spray we used the 

Tifoo conductive silver varnishing spray (with unfortunately no data about surface resistance), 

and as a supporting structure we used paper with weight (thickness) 200 g/m
2
. It can be seen 

form Fig. 6.27 that we did not manage to keep the width of the meander lines as it was cut in 

the pattern, i.e. the realized lines were wider than desired. We believe that we will soon solve 

this problem by selecting the proper materials for the mold pattern and for the supporting 

structure.  
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The comparison of measured results of two metasurface structures (produced with the PCB 

technology and with spraying the conductive paint, respectively) is given in Fig. 6.28. It can 

be seen that the low-conductivity of the paint introduced additional losses, i.e. the realized 

gain pattern is 1.9 dB lower when the conductive paint is used for metasurface production. 

Furthermore, the undesired change in the width of the meander lines causes additional 

perturbations in the radiation pattern (with larger back-side radiation comparing to the 

original design). We believe that more accurate production procedure and using better 

conductive paint (e.g.  Conductive silver coating 3830) will drastically improve the quality of 

metasurface structures produced using this simple technology. 

 

 

        

Fig. 6.26. Prototypes of the mold pattern with and without lateral shift of the internal walls. 

 

     

Fig. 6.27. Prototype of the metasurface structure produced by conductive coating technology. 
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(a)             (b) 

Fig. 6.28. The comparison of measured results of two metasurface structures produced by 

PCB technology and by spraying the conductive paint; (a) front radiation pattern, (b) full 

radiation pattern. 

 

(a)             (b) 

Fig. 6.29. The comparison of calculated results of two metasurface structures produced by 

PCB technology and by spraying the conductive paint; (a) front radiation pattern, (b) full 

radiation pattern. The assumed surface sheet impedance is given in Table 6.5 

 

We tried to estimate the losses in the strips and meander lines of the prototype produced 

using conductive paint. In order to do that we started with an approximate formula for surface 

impedance of periodic strip lines with included losses [49], i.e. with generalization of eq. 

(3.16.a): 
 

2

0 0

2
( ) log csc 1

2 2
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zz z

eff
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   
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    

   (5.1) 

 

Here Rσ is the term that represents the losses due to finite conductivity – it is a ratio of voltage 

and line current per unit length. We have estimated that term by measuring the DC resistance, 
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and the results are given in table 6.5. The comparison of calculated radiation pattern for 

omnidirectional excitation using the developed spectral-domain approach is given in Fig. 

6.29. By comparing the Figures 6.28 and 6.29 we can conclude that we have found a 

reasonable estimation of the surface impedance. The obtained values of surface resistance are 

quite large, which once more emphasize the need of using conductive paint of better quality 

(e.g.  Conductive silver coating 3830). 

 

 

TABLE 6.5 ESTIMATED SURFACE SHEET IMPEDANCE OF A METASURFACE REALIZED WITH PCB 

AND CONDUCTIVE PAINT TECHNOLOGY 
 

Segment 

No. 

Width of the 

stripline and 

meanderline 

Total width 

of the 

meander 

line 

Estimated surface 

sheet impedance of a 

metasurface realized 

with PCB 

technology 

Estimated surface sheet 

impedance of a 

metasurface realized 

with conductive paint 

technology 

1 w = 1.3 mm - j·126.16 Ω 10 + j·126.16 Ω 

2 w = 0.5 mm - j·223.66 Ω 360+ j·223.66 Ω 

3 w = 0.5 mm h = 3.5 mm j·392.53 Ω 683+ j·392.53 Ω 

4 w = 0.5 mm h = 5.15 mm j·587.52 Ω 828+ j·587.52 Ω 

5 w = 0.5 mm h = 6.1 mm j·756.39 Ω 918+ j·756.39 Ω 

6 w = 0.5 mm h = 6.5 mm j·853.89 Ω 954+ j·853.89 Ω 

 

 

We have also considered other technologies for performing metallization. Probably the 

best one is using sputtering technology [50]. Sputter deposition is a widely used technique to 

deposit thin films on substrates. The technique is based upon ion bombardment of a source 

material, the target. Ion bombardment results in a vapor due to a purely physical process, i.e. 

the sputtering of the target material. Then the target material is deposited on the object of 

interest (in our case on a dielectric substrate). Many scientific institutes have the sputtering 

systems, so they can be used for testing this promising metallization technology for the 

production of metasurface structures. Unfortunately, although one such facility exists in 

Zagreb, we were not able to arrange the production of such prototypes due to their time 

schedule (we hope to arrange it in near future). 

 

The last metallization technology we have investigated is electroless copper plating 

process. Here the object that we would like to metalize (produced using 3D printing 

technology) is put into a digestor, and the metallization process can be divided into the 

following stages: (i) rinsing and degreasing of 3D printed parts, (ii) preconditioning of 3D 

printed parts in a solution of sulphuric acid (H2SO4) and hydrogen-peroxide (H2O2) to create 

pores in the plastic for better adhesion of copper, (iii) sensitizing the surface by immersion 

into a solution of hydrogen chloride (HCl) and tin(II) chloride (SnCl2), (iv) applying a catalyst 

by immersing the parts into a solution of hydrogen chloride and palladium chloride (PdCl2) 

which allows the tin ions to bond with palladium ions (palladium is the catalyst for copper 

deposition), (v) removal of extra tin ions by immersion into a solution of hydrogen chloride 

(HCl) which melts the tin ions and removes them from the surface of the plastic parts, (vi) 
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deposition of copper through immersion in a solution of copper sulphate or copper chloride 

stabilised with ethylenediaminetetraacetic acid where formaldehyde is used for reductive 

coupling. Parts of this process are shown in the photographs in Fig. 6.30. This process is 

known as electroless bath process and is described in [51]. It results in a typical film thickness 

of 2-3 µm which is sufficient for our applications, but the components must be handled with 

care since the copper layer is easily scratched or damaged until a protective layer is applied. 

Till now we have successfully metalized objects (antennas) that originally are made from 

metal; the shape of produced antennas was determined using 3D printing technology and then 

they were fully metalized using the described technology. Now we are working on combining 

the production of the dielectric objects in 3D printing technology and the partial metallization 

(for that a mold pattern should be firmly attached to the 3D printed object). 

 

 

 
 

 
 

 
 

Fig. 6.30.  Various stages of the electroless copper plating process. 
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Conclusions 

 

 

Metasurfaces that manipulate electromagnetic waves have garnered significant attention in 

recent years. The focus has primarily been on planar devices, while many applications require 

curved surfaces. The purpose of this project is to develop an analysis approach and 

specialized programs that are able to efficiently and accurately design curved multilayer 

metasurface structures. The proposed approach combines the concept of sheet impedance with 

a new transmission matrix formulation that is applicable to stratified, canonical curved 

geometries. The results are verified both numerically and experimentally through a lot of 

metsurface examples of cylindrical and spherical shape, as well as through structures with 

body of revolution type of symmetry. 

The report discusses a method for determining the value of surface sheet impedance by 

considering the metasurface response on impinging electromagnetic wave with different 

phase variation along the curved surface, i.e. by response on different spectral-domain 

components of incoming wave. Furthermore, the reported approach extends the ABCD matrix 

formulation for the analysis of circuit networks or planar stratified electromagnetic structures 

to canonical curved geometries. The ABCD matrix formulation captures the interaction 

between sheets of the metasurface, while the individual sheets are modelled with surface 

impedance Z  calculated in the spectral domain. The surface impedances can be determined 

either using a rigorous electromagnetic solver, such as the Method of Moments, or using 

approximate analytical expressions. These approximate expressions often assume that the 

surface impedance is constant with respect to spectral-domain angular variation of the 

incidence field. This leads to inaccuracies when Z  changes rapidly with respect to the 

spectral variable, i.e. if the considered metasurface has strong spatial dispersion. To account 

for this, the analytical formulas for the surface impedance of some planar metallic patterns 

have been modified to account for the considered angular Fourier harmonic. It has been 

shown, through calculations and comparison with measurements, that such canonical 

metasurfaces can be accurately modelled with the proposed approach. The approach can also 

aid in selecting the type of patterned sheet needed to obtain the desired variation in surface 

impedance Z with modal number m. 

The considered analysis approach is extended to curved metasurfaces that are not 

homogeneous, i.e. to metasurfacses that have spatially-varying distribution of surface sheet 

impedance. The extended formulation also covers metasurfaces that are located only on a part 

of canonical curved surface (for the rest of the canonical surface we simply define that the 
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value of surface admittance is equal to zero). Four different formulations of the extended 

analysis approach are discussed, and the selection of most suitable one depends on the domain 

(spectral or spatial) in which we would like to calculate the surface impedance distribution 

and on the type of Green’s functions that will take into account the presence of the multilayer 

curved structure.  

The considered analysis approach is also extended to the structures with body-of-

revolution type of symmetry. This type of structures belongs to the class of two-dimensional 

structures, i.e. they are homogeneous only in one (circumferential) direction. Consequently, 

for each spectral component of the excitation we need to solve a two dimensional 

electromagnetic problem, and for that purpose we have developed an efficient Moment 

Method program. 

Finally, the problem of production of curved metasurfaces structures is discussed in the 

report. Single-curved structures (i.e. structures with one principal direction of curvature) can 

be quite easily produced using standard printed circuit board (PCB) technology; one just 

needs to select a proper substrate suitable for bending (i.e. a substrate with low value of the 

flexural modulus). However, double-curved structures are much harder to produce. One 

possibility is to produce the dielectric part using 3D printing technology and then somehow 

metalize the desired patterns on it. The metallization represents the largest problem in 

production, and it can be made using sprays with conductive paint (consequently, with larger 

losses comparing to the PCB technology), using electroless copper plating process or using 

sputtering technology. In all mentioned cases there are still many technology issues to be 

solved, in particular, the problem of firm contact of the mold pattern and the metasurface 

structure without cracks and gaps and these are the topics for future investigations.   
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Appendix 
 

 

 

A.1 Approximate expressions for sheet impedance of metasurfaces with canonical 

patterns 

 

In this Appendix we will list all the approximate expressions that we have used for initial 

design of metasurfaces created with metallic objects of regular geometric shape. Note that the 

final dimensions of metallic pattern were always determined with general solver (either based 

on the moment method (MoM) [26] or on Finite Integral Technique (FIT) [37]). However, 

these formulas are useful in order to get the feeling which elements (shapes) to use in some 

particular design, and which range of surface sheet impedance values can be achieved with 

the considered elements. Furthermore, the listed formulas have different level of accuracy; the 

most accurate formulas are for the simplest geometrical shapes – strips and patches.  

The approximate expressions used for different designs are:  

(a) Strips:  E-field is along the strips  (see Fig. A.1.a and references [27] and [49]) 
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(b) Strips:  E-field is perpendicular to the strips  (see Fig. A.1.a and ref. [27]) 
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(c) Two-dimensional strip grid (see Fig. A.1.b and references [27] and [49]) 
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(d) Patches (see Fig. A.1.b and ref. [27]) 
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(e) Meander lines (see Fig. A.1.d and ref. [52]) 

Approximate formula for parallel polarization (approximate formula for the perpendicular 

polarization can be found in [52]): 
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(f) Rectangular loops (see Fig. A.1.e and ref. [53]) 
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(f) Jerusalem crosses (see Fig. A.1.f  and references  [54] and [55]) 
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Fig. A.1. Regular geometrical shapes for which approximate expressions for surface sheet 

impedance are available. 

 

Typical values that can be obtained using different metallic objects with regular geometric 

shape are given in Fig. A.2. 
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Fig. A.2. Typical values of surface sheet impedance that can be obtained using different 

metallic objects with regular geometric shape. 

 

 

A.2  Moment method program for analyzing circular-cylindrical periodic structures 

 

The formulation of the moment method (MoM) program for analyzing circular-cylindrical 

periodic structures is derived from the formulation for analyzing circular-cylindrical periodic 

structures and is described in details in [26]. Planar periodic metal pattern (represented by 

patches or strips) can be accurately analyzed by expanding the unknown currents on metal 

patterns in basis functions, and by using MoM to numerically determine the amplitudes of the 

basis functions. We formulate an integral equation by stating that the tangential electric field 

is zero at the metal surface, i.e.   .0ˆ  scatincn EE  Since the structure is periodic the 

electromagnetic field excited by the currents is in the form of the Floquet modes, and the 

currents on different metal patterns are identical except for a linear phase difference equal to 

the considered harmonic variation of the incident field.  

The problem is solved in the spectral domain. In the planar case, we use a two-dimensional 

Fourier transformation in the directions in which the structure is periodic (i.e. x- and y- 

directions) and in the cylindrical case we use a Fourier transformation in a axial z direction 

and a Fourier series in a circumferential   direction. The scattered field E
scat

 can be expressed 

in terms of the spectral domain dyadic Green's function G
~

and the Fourier transform of the 

current on one metal pattern, according to 
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where inc

ok and inc

pk  are the propagation constants of the incident wave in two orthogonal 

directions across the metal pattern (i.e. o and p directions), Po and Pp are the periodicity of the 

unit cell in o and p directions, and ' denotes the source coordinates. The spectral domain 

Green's function G
~

is calculated for example by the G1DMULT routine. The integral 

equation is transformed into a matrix equation by using the MoM where the test functions are 

the same as the basis functions (Galerkin's method), and the inner product is taken across the 

central unit cell. The expression for the elements of the MoM matrix is derived from eq. 

(A.8), and the expression for the elements of the voltage vector is obtained by integrating the 

product of the test function and the incident field component parallel to the test function. The 

elements of the impedance matrix and the excitation vector are:  
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where conveniently we choose that the ou ' and pu'  coordinates of the center of the metal 

pattern are zero. In the planar case, the quantities in eqs. (A.8) - (A.11) are: 
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In the cylindrical case, the incident plane wave is expanded as 
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where Jn is the nth-order Bessel function of the first kind, the polarization angle α
inc

 is the 

angle the incident electric field makes with the plane of incidence, and θ
inc

 and inc are angles 

of incidence measured, respectively, from the z-axis and x-axis in the xy plane. The scatterer 

has the following symmetry: by rotating the scatterer by 
 N2 where 

N  is the number of 

unit cells in   direction, we get the same structure. Thus we expand the fields in Floquet 

modes in   direction where for every component of the incident field in eq. (A.13) the strips 

excite fields which have the same phase variation between the centers of the strips as the 

incident cylindrical wave. In this case the scattered field due to the incident wave with 

)exp( jn  variation is also given by eq. (A.8) with  
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